Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supplementary Materials

Novel Bi₂S₃/KTa_{0.75}Nb_{0.25}O₃ nanocomposite with high efficiency for photocatalytic and piezocatalytic N₂ fixation

¹Lu Chen^a, ¹Xiaoquan Dai^a, Xiaojing Li^a, Junfeng Wang^a, Huafong Chen^a, Xin Hu^b, Hongjun

Lin^c, Yiming He^{a, b*}, Ying Wu^{b*}, Maohong Fan^{d,e*}

^aDepartment of Materials Science and Engineering, Zhejiang Normal University, Jinhua, 321004,

China

^bKey Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of

Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China

^cCollege of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004,

China

^dDepartments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY

82071, USA

eSchool of Energy Resources, University of Wyoming, Laramie, WY 82071, USA

Corresponding author:

E-mail: <u>hym@zjnu.cn</u> (Y. He); <u>yingwu@zjnu.cn</u> (Y. Wu); <u>mfan@uwyo.edu</u> (M. Fan)

¹ These authors contribute equally.

1. Photo/piezocatalyticl N₂ fixation reaction

The photocatalytic N₂ fixation of the synthesized Bi₂S₃/KTa_{0.75}Nb_{0.25}O₃ (KTN) composite was performed under simulated sunlight irradiation. Before light irradiation, 50 mg of solid catalyst was added into a 100 mL methanol solution (containing 5 mL methanol and 95 mL deionized water) and stirred for 1 h in the dark to ensure an adsorption–desorption equilibrium. A 300W Xe lamp (PLS-SXE300, Beijing PefectLight) was used as a simulated sunlight source. The light intensity at the position of reactor is about 54 mW/cm². At every one-hour intervals of irradiation, 3 mL suspension was collected and centrifuged to obtain liquid samples. NH₄⁺ concentration analysis was conducted using Nessler's reagent method, at λ =420 nm in a UV-vis spectrophotometer. The photocatalyte N₂ fixation in the presence of different scavengers was performed in a similar way. Only the scavenger is changed. For the reaction in the presence of N₂, the bubbling N₂ (99.999%) flow rate was controlled to 50 mL/min. For the reaction under vacuum, the reactor was replaced with a closed quartz reactor. After the reaction solution and catalyst were added, the air in the reactor is evacuated. The relative pressure to the outside world is -97kPa (the real pressure is about 4.3 kPa).

The piezocatalytic N₂ fixation was performed in a similar process. The catalyst amount is 50 mg, and the reaction solution is methanol solution (5 mL methanol and 95 mL deionized water). After stirred in the dark for 1 h, the solution was placed in the center of vibration source (an ultrasonic vibration machine, 60W, 40 kHz) to receive a continuous ultrasonic vibration bath. At regular intervals, 3 mL of suspension was taken out and tested using the Nessler's method.

2. Determination of NH₃ content by the NMR method

After photocatalytic reaction for 5 hours, the obtained NH4⁺ content was also

quantitatively determined by ¹H nuclear magnetic resonance (NMR, 600 MHz, Bruker AV600) with external standards, which takes maleic acid ($C_4H_4O_4$) as a reference. The calibration curve was created as follows. First, a series of NH₄⁺ solutions with known concentration were prepared in 0.01 M HCl as standards; second, 24.5 mL of the NH₄⁺ standard solution was mixed with 0.5 mL maleic acid (25 µg/mL); third, the mixture was concentrated to approximately 1 mL and then identified using ¹H NMR spectroscopy (50 µL deuterium oxide (D₂O) was added in 0.45 mL concentrated solution before NMR detection); fourth, the calibration was achieved using the peak area ratio between NH₄⁺ and tris-maleate because the NH₄⁺ concentration and the area ratio are positively correlated. Similarly, the NH₄⁺ concentration after photocatalytic reaction was quantitatively determined by this method.

3. Characterizations of Bi2S3/KTN photocatalysts

The Bi content in the Bi₂S₃/KTN composite was analyzed by inductively coupled plasmaoptical emission spectrometer (ICP-OES) (Thermo Scientific, iCAP 7400). The K, Ta, and Nb content of KTa_{0.75}Nb_{0.25}O₃ solid solution was analyzed via X Ray Fluorescence (XRF, Bruker S8 LION). X-ray diffraction (XRD) analysis was performed on a D8 Advance (Bruker AXS GMBH, Germany) X-ray diffractometer using Cu K α radiation (40 kV/40 mA). The Raman spectra of the Bi₂S₃/KTN catalysts were recorded on a RM1000 spectrometer (Renishaw) via an excitation source of an Ar ion laser (514.5 nm). Scanning electron microscopy (SEM) was carried out on a Field emission scanning electron microscope (Hitachi S-4800) with the accelerating voltage of 5 kV. Transmission electron microscopy (TEM) was employed on a JEM-2010F transmission electron microscope via the accelerating voltage of 200 kV. The X-ray photoelectron spectroscopy (XPS) spectra of the catalysts were obtained via using a Thermo Scientific ESCALAB 250Xi Microprobe instrument using Al-K α as a ray source. The C 1s signal was adjusted in the location of 284.6 eV. UV-visible diffuse reflection spectroscopy (DRS) was actualized on a UV-visible spectrophotometer (Agilent Cary5000) and the reference sample was BaSO₄. Brunner–Emmet–Teller (BET) surface area analysis was performed by N₂ adsorption at 77 K on a 3H-2000PS2 apparatus (Beishide Instrument).

A CHI 660E electrochemical workstation with a standard three-electrode cell was employed to perform the photocurrent (PC) responses, the electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), and Mott-Schottky measurements. The test was operated at room temperature. The catalyst, Ag/AgCl (saturated KCl), and a Pt wire were used as the working electrode, the reference electrode, and the counter electrode, respectively. 200 mL Na₂SO₄ (0.5 M) aqueous solution was used as the electrolyte. A 300 W Xe lamp was served as the light source in PC measurement.

The working electrode was prepared as follows. 50 mg of catalyst and 20 μ L of ethanol was mixed in a 1.5 mL centrifuge tube, and sonicated for 15 minutes. Then, 25 μ L of perfluorosulfonic acid was added and sonicated for another 15 minutes to make sure that the catalyst sample is evenly dispersed in the solution. The obtained mixture was evenly coated on the conductive surface of a conductive glass to form a small square of 1.0 cm×1.0 cm. Finally, the electrode was dried at room temperature for 24 hours. For the LSV analysis in an N₂ and Ar saturated environment, carbon conductive adhesive was used during the preparation of working electrode to increase the adhesion of catalyst sample. The size of carbon conductive adhesive is 1.0 cm×1.0 cm, while the catalyst sample is coated on the carbon conductive adhesive. During the LSV test, the scan rate is 0.01 V/s, the sample interval is 0.001 V, the quiet time is 2 second, and the

sensitivity is 0.001 A/V.

4. The N_2 temperature programmed desorption (N_2 -TPD) experiment

The N₂-TPD experiment was performed in Micromeritics AutoChem II Chemisorption Analyzer. Typically, 100 mg of catalyst was placed in a quartz reactor and pretreated in a He (99.999%, 30 mL/min) atmosphere at 100°C for 60 minutes. After the temperature was cooled to 30° C, the sample was adsorbed with N₂ (99.999%, 30 mL/min) for 60 minutes, and then purged with He for another 60 minutes. After that, the sample was heated from 30°C to 650°C at a heating rate of 10°C/min.

5. Calculation of the apparent quantum efficiency of Bi₂S₃/KTN photocatalysts

The quantum efficiency of catalyst 0.25% Bi_2S_3/KTN can still be calculated according to the following method (λ was assumed to be 360 nm):

The NH_4^+ generation rate is determined to be 561.6 μ mol·L⁻¹g⁻¹·h⁻¹. The consumed electrons (N_e) can be calculated as follows:

 $N_{e} = (6.02 \times 10^{23} \text{ electrons/mol}) \times (561.6 \times 10^{-6} \text{ mol/L} \times 0.1\text{L}) \times 3 \div 3600 = 2.817 \times 10^{16}$ electrons $\cdot s^{-1} \cdot g^{-1}$;

The diameter of the reactor is 6.5 cm. The surface area (S) that can be irradiated by light is estimated.

 $S = 3.14 \times (3.25 \text{ cm})^2 = 33.16 \text{ cm}^2;$

Since the power density (P_d) at the position of catalyst is measured to be 0.054 W/cm², the total energy (E) shined over catalyst is estimated to be:

 $E = S \times P_d = 33.16 \times 0.054 = 1.79$ W, or 1.79J/s.

The energy of each photon is E_p = hf = (6.63 \times 10^{-34} Js) \times (3 \times 10^8 m/s) / (\lambda \times 10^{-9} m)

Since $\lambda = 360$ nm, $E_p = 5.525 \times 10^{-19}$ J.

The number (N_p) of photons hitting on catalyst in each minute is:

 $N_p = E/E_p = 1.79 \div (5.525 \times 10^{-19}) = 3.24 \times 10^{20};$

Quantum efficiency (g) under light with wavelength 400 nm is estimated to be:

 $g = N_e/N_p = 2.817 \times 10^{16} (electrons/s)/3.24 \times 10^{20} (photons/s) = 8.7 \times 10^{-5} \approx 0.008\%$

By the same way, the quantum efficiency of catalyst 0.25% Bi_2S_3/KTN under light with different wavelength can be calculated.

Figure S1 Raman spectra of $\mathrm{Bi}_2\mathrm{S}_3,$ KTN and $\mathrm{Bi}_2\mathrm{S}_3/\mathrm{KTN}$ composites

Figure S2 N1s XPS spectra of Bi_2S_3 , KTN and Bi_2S_3 /KTN composites

Figure S3 Mott-Schottky plots of KTN (a) and Bi_2S_3 (b).

Figure S4 N_2 adsorption-desorption isotherms of KTN, Bi_2S_3 and $0.25\%Bi_2S_3/KTN$ samples

Figure S5 UV-vis curves of various N_2H_4 · H_2O concentrations after incubation for 15 min at room temperature and the (b) calibration curve used for the estimation of the N_2H_4 · H_2O concentration

The concentration of N_2H_4 was detected via the Watt and Chrisp method. Typically, 20 µL of Ehrlich reagent (purchased from Sigma Aldrich) was added to 4 mL of a series of N_2H_4 ·H₂O standard solutions and the reacted solution. After incubation at room temperature for 15 minutes, the absorption spectra of the resulting solution were measured with a ultraviolet-visible (UV-vis) spectrophotometer. The formed complex was determined by absorbance at a wavelength of 455 nm.

Figure S6 UV-vis curves of various NaNO₃ concentrations after incubation for 10 min at room temperature and the (b) calibration curve used for the estimation of the NaNO₃ concentration

The NO₃⁻ in the solution was detected via the phenol disulfonic acid spectrophotometry. Typically, a series of 20mL NaNO₃ standard solutions was prepared and the pH was adjusted to 9 with a NaOH solution. The solution was then heated to evaporate the water to dryness. After that, 0.5 mL of phenol disulfonic acid (AR, Signma Aldrich) was added to dissolve the solid by stirring with a glass rod. After incubation at room temperature for 10 minutes, 5 mL of deionized water and 2 mL of ammonia were added. An ultraviolet-visible spectrophotometer was used to measure the absorbance of the resulting solution at a wavelength of 410 nm.

Figure S7 XRD (a), XPS (b), SEM (c) and EDS mapping (d) of $0.25\%Bi_2S_3/KTN$ after

photocatalytic reaction.

Figure S8 GC profiles of air (a) and the reaction gas (b)

The photocatalytic N_2 fixation with water as hole scavenger is performed in a closed reaction system. The amount of $0.25\%Bi_2S_3/KTN$ catalyst is 100 mg, and 200 mL deionized water is used as reaction solution. After the nitrogen (99.999%) has flowed into the reactor for 30 minutes, the reactor is sealed for the photocatalytic reaction. 5 mL of reaction gas was sampled and analyzed in a GC with a TCD detector before and after 5 hours reaction.

Figure S9 ¹H NMR spectrum of the solution after piezocatalytic N_2 fixation reaction in the presence of 0.25%Bi₂S₃/KTN. (Notes: the reaction solution was 50 times concentrated.)

Figure S10 The cycling test of $0.25\%Bi_2S_3/KTN$ photocatalyst in piezocatalytic N₂ fixation

Figure S11 XRD (a), XPS (b), SEM (c) and EDS mapping (d) of $0.25\%Bi_2S_3/KTN$ after

piezocatalytic reaction.

	Bi concentration		
Photocatalysts	Theoretical result	ICP	- ICP Bi_2S_3 content
		result	
0.1%Bi ₂ S ₃ /KTN	0.77	1.695	0.045
0.25%Bi ₂ S ₃ /KTN	2.553	4.225	0.151
0.5%Bi ₂ S ₃ /KTN	4.549	8.407	0.271
1%Bi ₂ S ₃ /KTN	12.209	16.642	0.734
5%Bi ₂ S ₃ /KTN	41.763	76.913	2.715

Table S1 ICP results of Bi_2S_3/KTN composite photocatalysts with different amount of Bi_2S_3

^a 0.1g catalyst was dissolved in a certain amount of HNO₃ (2 M) solution for 1 hour. The obtained clear solution was then diluted into 100ml for ICP test.

Table S2 Absolute electronegativity, estimated band gap, energy levels of calculated conduction

	Absolute		Calculated	Calculated
Semiconductors	electronegativity	Energy band	conduction band	valence band
	(X)	gap $E_{\rm g}$ (eV)	edge (eV)	edge (eV)
Bi ₂ S ₃	5.5558	1.26	0.42	1.69
KTa _{0.75} Nb _{0.25} O ₃	5.3133	3.36	-0.86	2.50

band edge, and valence band at the point of zero charge for $\mathrm{Bi}_2\mathrm{S}_3$ and KTN.

Catalyst	Light	Nitrogen	Scavengers	NH ₃	generation	Ref.
	source	source		rate/µmo	l·L⁻¹g⁻¹·h⁻¹	
Bi ₄ O ₅ Br ₂ /ZIF-8	UV-	N_2	water	327		[1]
	vis					
SiO ₂ /C–RP	UV-	N_2	water	36.5		[2]
	vis					
MoO ₂ /BiOCl	UV-	N ₂	water	35.0		[3]
	vis					
Ga ₂ O ₃ -DBD/g-C ₃ N ₄	UV-	N_2	ethanol	281		[4]
	vis					
CeO ₂ /BiFeO ₃	UV-	N_2	water	117		[5]
	vis					
FeS ₂ /CeO ₂	UV-	N_2	water	90.0		[6]
	vis					
P25	UV-	N_2	water	52.0		[7]
	vis					
BiO quantum dots	UV-	N_2	water	202		[8]
	vis					
BiOCl	UV-	N_2	methanol	68.9		[9]
	vis					

Table S3 Summary of reported photocatalysts for the N_2 reduction to NH_3

$W_{18}O_{49}/g$ - C_3N_4	UV-	N ₂	ethanol	144	[10]
	vis				
Bi ₂ MoO ₆ / BiOBr	UV-	N_2	water	90.7	[11]
	vis				
MoS ₂ /C/ZnO	UV-	air	ethanol	245	[12]
	vis				
Ag/KNbO ₃	UV-	air	ethanol	385	[13]
	vis				
NiO/KNbO ₃	UV-	air	ethanol	470	[14]
	vis				
Bi ₂ S ₃ /KTN	UV-	air	methanol	561	This work
	vis				

Table S4 Binding energies of all elements of $0.25\% Bi_2S_3/KTN$ photocatalysts before and after

Photocatalytsts	Binding energy / eV						
	K2p _{3/2}	Ta4f _{7/2}	Nb3d _{5/2}	O1s	Bi4f _{7/2}	S2p _{3/2}	
Fresh	291.0	25.3	206.4	529.2	157.9	-	
Photo-used	291.1	25.4	206.4	529.3	158.0	-	

photocatalytic or piezocatalytic reaction.

References:

- [1] J.X. Liu, R. Li, X. Zu, X.C. Zhang, Y.F. Wang, Y.W. Wang, C.M. Fan, Photocatalytic conversion of nitrogen to ammonia with water on triphase interfaces of hydrophilichydrophobic composite Bi₄O₅Br₂/ZIF-8. Chem. Eng. J. 371 (2019) 796–803.
- [2] L. Lin, Q. Zhu, A. Cheng, L. Ma, Efficient solar-driven nitrogen fixation over an elemental phosphorus photocatalyst. Catal. Sci. Technol. 10 (2020) 4119–4125.
- [3] C.L. Xiao, H.P. Wang, L. Zhang, S.M. Sun, W.Z. Wang, Enhanced photocatalytic nitrogen fixation on MoO₂/BiOCl composite. ChemCatChem 11 (2019) 6467–6472
- [4] S. Cao, N. Zhou, F. Gao, H. Chen, F. Jiang, All-solid-state Z-scheme 3,4dihydroxybenzaldehyde-functionalized Ga₂O₃/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation. Appl. Catal. B: Environ. 218 (2017) 600–610.
- [5] S. Mansingh, S. Sultana, R. Acharya, M.K. Ghosh, K.M. Parida, Efficient photon conversion via double charge dynamics CeO₂-BiFeO₃ p-n heterojunction photocatalyst promising toward N₂ fixation and phenol-Cr(VI) detoxification. Inorg. Chem. 59 (2020) 3856–3873.
- [6] S. Sultana, S. Mansingh, K. M. Parida, Phosphide protected FeS₂ anchored oxygen defect oriented CeO₂NS based ternary hybrid for electrocatalytic and photocatalytic N₂ reduction to NH₃. J. Mater. Chem. A 7 (2019) 9145–9153

- Y. Liao, J.N. Lin, B.H. Cui, G. Xie, Well-dispersed ultrasmall ruthenium on TiO₂(P25) for effective photocatalytic N₂ fixation in ambient condition. J. Photochem. Photobiol. A: Chem. 387 (2020) 112100.
- [8] S. Sun, Q. An, W. Wang, L. Zhang, J. Liu, W.A. Goddard Iii, Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. J. Mater. Chem. A 5 (2017) 201–209.
- [9] H. Li, J. Shang, J. Shi, K. Zhao, L. Zhang, Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale 8 (2016) 1986– 1993.
- [10] S. Hu, H. Zou, S.Z. Hu, Preparation of the W₁₈O₄₉/g-C₃N₄ heterojunction catalyst with fullspectrum-driven photocatalytic N₂ photofixation ability from the UV to near infrared region. New J. Chem. 41 (2017) 8920–8926.
- [11] X.L. Xue, R.P. Chen, C.Z. Yan, Y. Hu, W.J. Zhang, S.Y. Yang, L.B. Ma, G.Y. Zhu, Z. Jin, Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi₂MoO₆ and oxygen-vacancy-rich p-type BiOBr. Nanoscale 11 (2019) 10439–10444.
- [12] P.X. Xing, P.F. Chen, Z.Q. Chen, X. Hu, H.J. Lin, Y. Wu, L.H. Zhao, Y.M. He, Novel ternary MoS₂/C-ZnO composite with efficient performance in photocatalytic NH₃ synthesis under simulated sunlight. ACS Sustain. Chem. Eng. 6 (2018) 14866–14879.
- [13] P.X. Xing, S.J. Wu, Y.J. Chen, P.F. Chen, X. Hu, H.J. Lin, L.H. Zhao, Y.M. He, New application and excellent performance of Ag/KNbO₃ nanocomposite in photocatalytic NH₃ synthesis. ACS Sustain. Chem. Eng. 7 (2019) 12408–12418.

[14] P.X. Xing, W.Q. Zhang, L. Chen, X.Q. Dai, J.L. Zhang, L.H. Zhao, Y.M. He, Preparation of NiO/KNbO₃ nanocomposite via photodeposition method and its superior performance in photocatalytic N₂ fixation, Sustain. Energy Fuels 4 (2020) 1112–1117.