Supporting Information:

Structural Stability and Defect-Tolerance of Ionic Spinel Semiconductor for **High-Efficiency Solar Cells**

Hanzhen Liang,[⊥] Huiwen Xiang,[⊥] Rui Zhu, Chengyan Liu^{*}, Yu Jia

Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, Henan 475001, China

E-mail: cyliu@henu.edu.cn

Part 1. Chemical potential conditions of HgX₂S₄ phase

Since the formation energy of defects is the function of chemical potential, we need to obtain the phase diagram which limits the region of chemical potential before calculating defects' formation energies. HgX_2S_4 phase diagram is thermodynamically limited by the following conditions. To avoid the pure phase of elements, the following conditions must be satisfied

$$\mu_{\text{Hg}} \le 0, \ \mu_{\text{X}} \le 0, \ (\text{X} = \text{In}, \text{Sc and } \text{Y}), \ \mu_{\text{S}} \le 0.$$
 (S1)

Similarly, to exclude the formation of secondary phase of compounds, their formation enthalpies must satisfy eq. S2 for HgIn₂S₄, eq. S3 for HgSc₂S₄ and eq. S4 for HgY₂S₄.

	$\mu_{\rm Hg} + \mu_{\rm S} \le \Delta H_{\rm HgS} (-0.42 \text{ eV})$	$2\mu_{\rm In} + 3\mu_{\rm S} \le \Delta H_{\rm In_2S_3}(-4.03 \text{ eV})$	
	$\mu_{\rm Hg} + 4\mu_{\rm S} \le \Delta H_{\rm HgS_4} (-1.37 \text{ eV})$	$3\mu_{\rm ln} + \mu_{\rm S} \le \Delta H_{\rm ln_3S}(-1.27 \text{ eV})$	
	$\mu_{\rm In} + \mu_{\rm Hg} \le \Delta H_{\rm InHg} (-0.42 \text{ eV})$	$3\mu_{\rm in} + 4\mu_{\rm S} \le \Delta H_{\rm In_3S_4} (-5.08 \text{ eV})$	
<	$\mu_{\rm In} + 3\mu_{\rm Hg} \le \Delta H_{\rm InHg_3} (-0.46 \text{ eV})$	$5\mu_{\rm in} + 4\mu_{\rm S} \le \Delta H_{\rm In_5S_4} (-6.13 \text{ eV})$	(S2)
	$3\mu_{\rm In} + \mu_{\rm Hg} \le \Delta H_{\rm In_3Hg}(-1.29 \text{ eV})$	$5\mu_{\ln} + 8\mu_{\rm S} \le \Delta H_{\ln_5 S_8} (-8.48 \text{ eV})$	
	$\mu_{\rm In} + \mu_{\rm S} \le \Delta H_{\rm InS} (-1.61 \text{ eV})$	$6\mu_{\ln} + 7\mu_{\rm S} \le \Delta H_{\ln_6 S_7} (-10.23 \text{ eV})$	
	$\mu_{\rm In} + 2\mu_{\rm S} \le \Delta H_{\rm InS_2} (-0.64 \text{ eV})$	$11\mu_{\text{In}} + 16\mu_{\text{S}} \le \Delta H_{\text{In}_{1},\text{S}_{16}}(-21.31 \text{ eV})$	
	$\mu_{\rm Hg} + \mu_{\rm S} \le \Delta H_{\rm HgS} (-0.42 \text{ eV})$	$3\mu_{\rm Sc}+\mu_{\rm Hg} \leq \Delta H_{\rm Sc_3Hg}(-1.14 \text{ eV})$	
	$\mu_{\rm Hg} + 4\mu_{\rm S} \le \Delta H_{\rm HgS_4} (-1.37 \text{ eV})$	$\mu_{\rm Sc} + \mu_{\rm S} \le \Delta H_{\rm ScS} (-4.02 \text{ eV})$	
	$\mu_{\rm Sc} + \mu_{\rm Hg} \le \Delta H_{\rm ScHg} (-1.06 \text{ eV})$	$\mu_{\rm Sc} + 2\mu_{\rm S} \le \Delta H_{\rm ScS_2} (-3.68 \text{ eV})$	(S3)
	$\mu_{\rm Sc} + 3\mu_{\rm Hg} \le \Delta H_{\rm ScHg_3} (-1.18 \text{ eV})$	$2\mu_{\rm Sc} + 3\mu_{\rm S} \le \Delta H_{\rm Sc_2S_3} (-10.60 \text{ eV})$	

$$\begin{cases} \mu_{\text{Hg}} + \mu_{\text{S}} \leq \Delta H_{\text{HgS}}(-0.42 \text{ eV}) & \mu_{\text{Y}} + \mu_{\text{S}} \leq \Delta H_{\text{YS}}(-4.39 \text{ eV}) \\ \mu_{Hg} + 4\mu_{S} \leq \Delta H_{\text{HgS}_{4}}(-1.37 \text{ eV}) & \mu_{\text{Y}} + 2\mu_{\text{S}} \leq \Delta H_{\text{YS}_{2}}(-0.30 \text{ eV}) \\ \mu_{\text{Y}} + \mu_{\text{Hg}} \leq \Delta H_{\text{YHg}}(-1.26 \text{ eV}) & 2\mu_{\text{Y}} + 3\mu_{\text{S}} \leq \Delta H_{\text{YS}_{2}}(-11.64 \text{ eV}) \\ \mu_{\text{Y}} + 2\mu_{\text{Hg}} \leq \Delta H_{\text{YHg}_{2}}(-1.57 \text{ eV}) & 5\mu_{\text{Y}} + 7\mu_{\text{S}} \leq \Delta H_{\text{YS}_{7}}(-27.94 \text{ eV}) \\ \mu_{\text{Y}} + 3\mu_{\text{Hg}} \leq \Delta H_{\text{YHg}_{3}}(-1.83 \text{ eV}) \end{cases}$$
(S4)

Part 2. Degeneracy factor of intrinsic defects in HgX_2S_4 spinel system

The degeneracy factor g_q of a charged defect level and the arrangement of electron on defect energy levels of different defects are listed in the following Table S1.

Table S1. Degeneracy factor of intrinsic defects in HgX_2S_4 spinel system combing with the consideration of energy level splitting in crystal field.

		${oldsymbol{g}}_q$		Crystal fields		Configurations (take $q = +1/q = -1$ as an example)		
Defects	q	X=In	X=Sc/Y	X=In	X=Sc/Y	X=In	X=Sc/Y	
Hg _i	0	$C_2^2 = 1$ $C_2^1 = 2$ $C_2^0 = 1$				 Г HgD		
	1+			D_{3d}	6s 🔶			
	2+							
	0	$C_{2}^{1} = 2$	$C_2^1 C_2^1 = 4$	$\mathrm{D}_{\mathrm{3}d}$	0 In0	$\overline{E_{g}}$		
	1+	$C_2^2 = 1$	$C_2^2 = 1$		$5p$ $5p_x / 5p_y$ $3d$ A_{lg}			
X_i	2+	$C_2^1 = 2$	$C_{2}^{1} = 2$		$5p_{2}$ $4s$ $4s$ $4s$			
	3+	$C_2^0 = 1$	$C_2^0 = 1$			$\frac{4s}{4s}$		
	0	$C_{2}^{1} = 2$	$C_{2}^{1} = 2$	T _d	0 In0	$3d \xrightarrow{\square X\square} T$		
X_{Hg}	1+	$C_2^0 = 1$	$C_2^0 = 1$		5p			
	0	$C_{2}^{1}(C_{2}^{1})$	$(\frac{1}{2})^3 = 16$			I Hg + 3Sc)		
Vs	1+	$C_2^1 (C_2^1)^3 = 16$ $C_2^0 (C_2^0)^3 = 1$				$6s \underbrace{\uparrow \downarrow}_{4s} \underbrace{3d }_{(take X = Sc as an example)}$		
	2+							
	0	$C_2^1 C_3^2 C_2^1$	$C_3^1 = 36$					
	1-	$C_{2}^{1}C_{3}^{1}$	= 6		(S)			
V _X	2-	$C_{2}^{1}C_{3}^{2}$	= 6			3p + + + + + + + + + + + + + + + + + + +		
	3-	$C_{3}^{0} =$	= 1					
V _{Hg}	0	$C_{2}^{1}C_{3}^{1}$	= 6				(S)	
	1-	$C_{2}^{1}C_{3}^{2}$	= 6			3p + + + +		
	2-	$C_{3}^{0} =$	= 1				••	
	0	$C_{2}^{1}C_{3}^{2}$	= 6	O_h	3 <i>p</i> 4			
Hg _X	1-	$C_{3}^{0} =$	= 1		3s	* +* '*		

Part 3. Optical absorption coefficient and partial charge density of CBM

Fig. S1. Optical absorption coefficient of HgX₂S₄ spinel semiconductors (X=In, Sc and Y).

Fig. S2. Partial charge density of CBM for (a) $HgIn_2S_4$, (b) $HgSc_2S_4$ and (c) HgY_2S_4 .