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Methods

Membrane fabrication. PBI was fabricated based on our previous study1. A certain 

amount (17 wt%) of polybenizimidazole (PBI) was firstly dissolved in 

dimethylacetamid (DMAc) to form a homogeneous polymer solution. Then the 

solution was cast on a dry and clean glass plate using a doctor blade (Elcometer 3545 

adjustable Bird Coater, Scraper, Elcometer 3545/8) at room temperature with 

humidity less than 60% to avoid the penetration of water vapor into the polymer 

solution. The glass plate was immersed into water immediately to form the membrane 

with a porous structure. Then the membrane was peeled off and soaked in water 

before solvent treatment. 

Subsequentially, membranes with fixed size were immersed into the treating solvent 

for 30 minutes. The membranes were then put at room temperature for at least 24 h to 

evaporate the solvent completely. Finally, the membranes were stored in water for 

use. 

Establishment and analysis of dataset. The total dataset includes 98 samples which 

are from the experiments2 and the details are list in supplementary Dataset 1. The data 

is spilt randomly with 75 % of samples in training set and 25 % of samples in testing 

set during modeling. The Pearson correlation coefficients between each feature and 

efficiencies (VE and EE) were calculated for correlation analysis. The results are 

shown in Figure S1. The current density has strong linear correlation with VE and EE, 

while other features have weak linear correlation with VE and EE so linear regression 

was chosen. ANN with no hidden layer is capable of representing linear separable 

functions or decisions. ANN with 1 hidden layer can approximate any function that 

contains a continuous mapping from one finite space to another. ANN with 2 hidden 

layers can represent an arbitrary decision boundary to arbitrary accuracy with rational 

activation functions and can approximate any smooth mapping to any accuracy. ANN 

with more than 2 hidden layers shows that additional layers can learn complex 

representations (sort of automatic feature engineering) for layer layers. Since our 

dataset is simple and a single sufficiently large hidden layer is adequate for 

approximation of most functions, so we also choose ANN to build the model.
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Figure S1. Pearson correlation coefficient between each feature and efficiencies (VE 
and EE)

Performance prediction model and evaluation criterion. The data pre-processing 

and ML modeling are carried out using the Python 3.7 package including the NumPy, 

pandas, sklearn and Tensorflow 2.3.0 packages. The whole dataset is spilt into Linear 

regression and a fully connected neural network were applied to handle the 

multidimensional data and to predict the performance of PBI membrane treated with 

different solvents, respectively. The linear regression model was as follows, 

                       (1)  bb,,f  XwwX T

Where =<x1, x2,…, xn> was the n-dimensional feature vector including the X

experiment parameters and solvent properties. =<w1, w2,…, wn> was w

corresponding coefficient vector of X, and b was the bias (or intercept). Here, 

 was the predicted performance (VE or EE) of the PBI membrane. The  b,,f wX

generalized least squares method was employed to minimize the loss function , ),( bL w

and the objective formula is as follows,
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Where  means to optimize w, b to minimize the cost function ),( argmin
,

bL w
w b

. y=<y1, y2,…, ym> was the experiment value, and yi was one component in y. ),( bL w

 was the predicted value of xi. m was the number of the data in the dataset.  b,,f wXi

ANN was built with one hidden layer including 32 units. The activation function was 

‘relu’, the training epochs was 200. The optimizer was ‘adam’ with default 

parameters. The loss of the training set and testing set for VE and EE was shown in 

Figure S2(a) and S2(b), respectively. 

Figure S2. The loss for (a) VE and (b) EE

To evaluate the accuracy of performance prediction model, three standards were 

applied and can be calculated as follows,

1) Coefficient of determination (R2)
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Where RSS is the residual sum of squares and TSS is the total sum of squares. fi is the 

prediction value corresponding to xi and  is the average value experiment data.ŷ

2) Mean square error (MSE)
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Where  is the average value of the predicted data.f̂

3) Mean absolute prediction error (MAPE)
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Computational details. Density functional theory (DFT) calculations were 

performed to further reveal the interaction between porous membrane and various 

solvents. The structure of PBI segment, PBI-10 and solvents were optimized with 

M06-2X3 hybrid functional with def2-svp4 basis set using Gaussian 165 software. In 

order to investigate the weak interaction between molecules, the atom-pairwise 

dispersion correction (DFT-D3)6 was also included. The structures of PBI segment 

combined with each solvent were optimized at the same functional and basis set. The 

binding energy was calculate with the same functional at triple zeta basis set def2-

tzvp4 and the basis set superposition error (BSSE) correction7 was taken into account. 

Molecular electrostatic potential (ESP) on vdW surface was analyzed by wave 

function analyzer Multiwfn and drawn by VMD software.
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The R2 and MSE of 1, 2 and 3 hidden layers ANN is listed in Table S1. 

Table S1. Coefficient of determination (R2) and mean square error (MSE) of VE and 

EE for 1, 2 and 3 hidden layers ANN, respectively. 

R2 MSE
optimizer="adam"

Activation 
function="relu" Training Test Training Test
VE % 0.9465 0.9224 0.2636 0.5013 

ANN-1L
EE % 0.9343 0.8244 0.2239 0.8690 
VE % 0.9501 0.9055 0.2501 0.6107 

ANN-2L
EE % 0.9477 0.8311 0.1891 0.8358 
VE % 0.9516 0.9260 0.2390 0.4782 

ANN-3L
EE % 0.9487 0.8463 0.1816 0.7607 
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The R2 and MSE of “adam”, “SGD”, “Adagrad” optimizer in 1 hidden layer ANN is 

listed in Table S2. 

Table S2. Coefficient of determination (R2) and mean square error (MSE) of VE and 

EE for optimizer “adam”, “SGD” and “Adagrad”, respectively.

R2 MSE
ANN-1L

Activation 
function="relu" Training Test Training Test
VE % 0.9465 0.9224 0.2636 0.5013 

adam
EE % 0.9343 0.8244 0.2239 0.8690 
VE % 0.9374 0.8878 0.3037 0.7248 

SGD
EE % 0.9193 0.7682 0.2776 1.1475 
VE % -3.1096 -0.0248 4.2382 6.6205 

Adagrad
EE % -12.2486 0.2181 2.7798 3.8700 
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The R2 and MSE of “relu”, “exponential” and “linear” activation function in 1 hidden 

layer ANN is listed in Table S3. 

Table S3. Coefficient of determination (R2) and mean square error (MSE) of VE and 

EE for activation function “relu”, “exponential” and “linear”, respectively.

R2 MSE
ANN-1L

optimizer
="adam" Training Test Training Test
VE % 0.9465 0.9224 0.2636 0.5013 

relu
EE % 0.9343 0.8244 0.2239 0.8690 
VE % 0.9365 0.9461 0.3106 0.4381 

exponential
EE % 0.9037 0.8211 0.3281 0.8857 
VE % 0.9322 0.9413 0.3329 0.3793 

linear
EE % 0.8967 0.8069 0.3544 0.9557 
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The R2 and MSE of Linear regression, Dummy regression (mean) and Dummy 

regression (median) is listed in Table S4.

Table S4. Coefficient of determination (R2) and mean square error (MSE) of VE and 

EE for Linear regression, Dummy regression (mean) and Dummy regression (median).

R2 MSE

Training Test Training Test
VE % 0.9363 0.9384 0.3317 0.3977 

Linear regression
EE % 0.9062 0.8141 0.3522 0.9201 
VE % 0.0000 -0.0364 2.5578 2.5578 Dummy regression 

(mean) EE % 0.0000 -0.1358 3.6728 2.0707 
VE % -0.0417 -0.0111 5.4004 2.4954 Dummy regression 

(median) EE % -0.0222 -0.0247 3.7543 1.8681 
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