Mesoporous titanium niobium nitrides supported Pt nanoparticles for highly selective and sensitive formaldehyde sensing

Chaozhu Huang^{b,c}, Samira Adimi^a, Dongliang Liu^b, Haichuan Guo^b, Tiju Thomas^d, J. Paul Attfield^e, Shengping Ruan^a, Fengdong Qu^{b*} and Minghui Yang^{b,c*}

^aState Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University,

Changchun, 130012, China

^bNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

^cCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

^dDepartment of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Adyar, Chennai-600036, India

eCentre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings,

Mayfield Road, Edinburgh, EH93JZ, United Kingdom.

E-mail: fqu@nimte.ac.cn (F.Q.); myang@nimte.ac.cn (M.Y.)

Computational methodology: DFT calculations were performed with the Dmol3 package code in Material Studio 8.0. the double numerical plus polarization (DNP) basis set and the generalized-gradient approximation (GGA) with the Perdew-Burke-Emzerhof (PBE) were employed to obtain all the results reported below^{1, 2}. In order to avoid the interaction between adjacent cells, a vacuum slab of 15 Å was established. The core treatment was set as Effective Core Potential to manage the interaction between the nucleus and valence electron, whereas the Brillouin zone k-point sampling was performed in 2×2×1 Monkhorst-Pack mesh. The energy tolerance accuracy, maximum force, and displacement were set as 10⁻⁵ Ha, 2×10⁻² Ha/Å, 3.7 Å and 5×10⁻² Å, respectively. For static electronic structure calculations, self-consistent loop energy of 10⁻⁵ Ha and smearing of 0.005 Ha were employed to ensure the accurate results of total energy³.

The formation energy (E_{for}) between Pt and support was calculated by the following equation:

$$E_{for} = E_{Pt/support} - (E_{Pt} + E_{support})$$

E_{Pt/support}, E_{Pt} and E_{support} are the total energies of the total energy of the support combined with Pt, Pt and support, respectively.

Gas distribution formula

For vapors:

$$\frac{V \times C \times M}{V_{1}} \times \frac{273 + T_R}{22.4 \times d \times P} \times \frac{273 + T_R}{273 + T_B} \times \frac{10^{-9}}{10^{-9}}$$

For gases:

$$\sum_{V_{I}=V \times c} \times \frac{273 + T_{R}}{273 + T_{B}} \times \sum_{10^{-1}}$$

 V_1 represents the volume of liquid vapor or high purity gas to be injected during gas distribution (unit: ml), V represents the volume of test bottle (unit: ml), M represents the molecular weight of the prepared liquid, D represents the specific gravity (unit: g/cm³), P represents the purity (liquid), T_R represents the ambient temperature, T_B represents the temperature in the test bottle (unit: °C), C represents the concentration of liquid vapor to be configured for the experiment (unit: ppm).

Supplementary Figure S1. a) The real picture and b) schematic diagram of the test system.

Supplementary Figure S2. XRD pattern of $Ti_xNb_{1-x}N$.

Supplementary Figure S3. XPS spectra a) Wide-range, b) Ti 2p region, c) Nb 3d region and d) N 1s region spectra of Pt/Ti_{0.75}Nb_{0.25}N NPs, e) Pt 4f region spectra of commercial Pt/C and Pt/Ti_xNb_{1-x}N.

Supplementary Figure S4. a) XRD pattern and b) SEM images of molten precursor. The SEM images of c) NbN, d) Ti_{0.25}Nb_{0.75}N, e) Ti_{0.5}Nb_{0.5}N and (f) TiN

Supplementary Figure S5. N_2 adsorption-desorption isotherm and pore size distribution of $Ti_{0.75}Nb_{0.25}N$.

Supplementary Figure S6. The ratio of the ΔI of Pt/Ti_xNb_{1-x}N sensor to that of Pt/Ti_{0.75}Nb_{0.25}N sensor in 50 ppm formaldehyde.

Supplementary Figure S7. Current baseline of Pt/Ti_{0.75}Nb_{0.25}N and commercial Pt/C sensor in air for 20 min. The insets show zoomed-in regions spanning 200 s.

Supplementary Figure S8. a) Average change in response (ΔI) of Pt/Ti_{0.75}Nb_{0.25}N sensor to 50 ppm formaldehyde gas. Shaded areas represent standard deviations (SDs, n=6). b) Average real-time response of Pt/Ti_{0.75}Nb_{0.25}N and Pt/C-based sensor to 50 ppm formaldehyde at fresh and 2 months later.

Supplementary Figure S9.a) Selectivity and b) selectivity improvements of Pt/Ti_xNb_{1-x}N (x=0, 0.25, 0.5, 0.75, 1) sensor toward various analyte gases.

Figure S9a shows the response of Pt/Ti_xNb_{1-x}N on 50 ppm formaldehyde (HCHO), methanol (CH₃OH), ethanol (C₂H₅OH), hydrogen (H₂₎, carbon monoxide (CO) and carbon disulfide (CS₂) under the same conditions. Although all the sensors exhibit selectivity for formaldehyde, Pt/Ti_{0.75}Nb_{0.25}N has the highest formaldehyde response. Compared to other sensors, the response of Pt/Ti_{0.75}Nb_{0.25}N to other interfering gases is effectively suppressed. Adjusting the composition of ternary nitrides can change the surface chemical properties of nitrides and affect the catalytic activity for gas reaction.^{4, 5} When the atomic ratio of Ti to Nb is adjusted to 3:1, the catalytic activity of the gas sensing catalyst for formaldehyde is significantly enhanced. This may be due to the synergistic effect of Pt and Ti_{0.75}Nb_{0.25}N, which makes the catalytis show the best catalytic activity for formaldehyde. As shown in Figure S9b, we confirm that Pt/Ti_{0.75}Nb_{0.25}N is the best composition of Ti_xNb_{1-x}N offering selectivity for sensing formaldehyde. This is determined by calculating the selectivity ($\Delta I_{ACHO}/\Delta I_{other gas}$) of the sensor. Therefore, Ti_{0.75}Nb_{0.25}Nis selected as catalyst support to replace carbon black for improvement in the performance of the sensor.

Supplementary Figure S10. Formation energy of $Pt/Ti_{0.75}Nb_{0.25}N$ and Pt/C.

Supplementary Figure S11. The influence of relative humidity (RH) on the gas sensing performance of the sensor. a) Transient response and b) response current and drift percentage under different RH.

Sample	Atomic ratio of raw materials (Ti:Nb)	The results of ICP (Ti:Nb)
NbN	0:1	0:1
Ti _{0.25} Nb _{0.75} N	1:3	1:2.89
Ti _{0.5} Nb _{0.5} N	1:1	1:1.04
Ti _{0.75} Nb _{0.25} N	3:1	2.92:1
TiN	1:0	1:0

Supplementary Table S1. The results of as prepared $Ti_xNb_{1-x}N$

Sensing electrode	Working	Sensing signal	Typical response	Sensitivity	T _{res} /T _{reco} time (s)	Sensitivity drift	References
	conditions						
Pt/Ti _{0.75} Nb _{0.25} N	RT	Current	10.42µA (50 ppm)	0.208 μA/ppm	14/19	1%/2 months	This work
Pt/C (JM)	RT	Current	3.01µA (100 ppm)	0.058 μA/ppm	38/57	43%/2 months	Johnson Matthey
Ni–In ₂ O ₃ /WS ₂	RT	Resistance	32 (20 ppm)	14.84/ppm	76/123	~3%/2 months	6
Ag@Pt@ZnO	280 °C	Resistance	0.26 (240 ppb)	/	162/225	~5%/42 days	7
Au/In ₂ O ₃	100 °C	Resistance	85.67 (50 ppm)	1465/ppm	25/198	~5%/1 month	8
Co-doped In ₂ O ₃	130 °C	Resistance	23.2 (10 ppm)	~2.5/ppm	60/12	~10%/30 days	9
6%-Ag/Ni _{5.0} In ₂ O ₃	160 °C	Resistance	74.01 (50 ppm)	/	1.45/58.2	3%/21 days	10
CdO/CdGa ₂ O ₄	110 °C	Resistance	1.5 (10 ppm)	4.454/ppm	10/120	10%/45 days	11
2D GO/SnO ₂	60°C	Resistance	2275.7 (100 ppm)	/	81.3/33.7	/	12
La_2O_3 - SnO_2 - Sn_3O_4	220 °C	Resistance	117.29 (100 ppm)	0.00125/ppb	3/3	/	13
PEI/BC	200 MHZ	Frequency shift	35600 HZ (10 ppm)	5.8 Hz/ppb	34/28	~5%/32 days	14
PDA/ZnO	RT	Enthalpy (ΔH°)	~800 HZ (30 ppm)	0.46 Hz/ppb	/	/	15
7.5 wt.% K-CGO	120 °C	Resistance	90 (10 ppm)	7.021/ppm	1/62	~15%/30 days	16
PdAu/SnO ₂	110 °C	Resistance	125 (100 ppm)	111.3In C	68/32	/	17
5% Ca-In ₂ O ₃	130 °C	Resistance	116 (100 ppm)	1.2/ppm	116/328	~35%/30 days	18
H-SnO2@rGO	130 °C	Resistance	435 (10 ppm)	159/ppm	/	~3%/10 days	19
Pr-BiFeO ₃	190 °C	Resistance	30.1 (100 ppm)	~0.25/ppm	17/19	~10%/28 days	20
NiO/NiFe ₂ O ₄	240 °C	Resistance	27 (50 ppm)	/	9/3	~3%/30 days	21
Sn ₃ O ₄ /rGO	150 °C	Resistance	44 (100 ppm)	0.3754/ppm	4/125	~6%/56 days	22
LaFeO ₃	125 °C	Resistance	116 (5 ppm)	1.37/ppm	3.8/25.6	4%/15 weeks	23
PdO-ZnO/ZnCo ₂ O ₄	139 °C	Resistance	26.5(100 ppm)	0.32/ppm	12/22	~13%/90 days	24
Sn-MOFs	120 °C	Resistance	882(2 ppm)	/	19/~25	~20%/8 days	25
SnO ₂ /ZnO	200 °C	Resistance	38.2(20 ppm)	0.5056/ppm	27/89	~12%/7 months	26

Supplementary Table S2. The summary of gas sensing devices for formaldehyde sensing characteristics reported recently

References

- 1. H. Cui, G. Zhang, X. Zhang and J. Tang, Nanoscale Advances, 2019, 1, 772-780.
- 2. H. Cui, X. Zhang, G. Zhang and J. Tang, Applied Surface Science, 2019, 470, 1035-1042.
- 3. W. Ju, T. Li, X. Su, H. Li, X. Li and D. Ma, Phys Chem Chem Phys, 2017, 19, 20735-20748.
- 4. Z. Cui, R. G. Burns and F. J. DiSalvo, Chemistry of Materials, 2013, 25, 3782-3784.
- 5. M. Yang, A. R. Van Wassen, R. Guarecuco, H. D. Abruna and F. J. DiSalvo, Chem Commun (Camb), 2013, 49, 10853-10855.
- 6. D. Zhang, Y. Cao, Z. Yang and J. Wu, ACS Appl Mater Interfaces, 2020, 12, 11979-11989.
- 7. D. Xu, P. Xu, X. Wang, Y. Chen, H. Yu, D. Zheng and X. Li, ACS Appl Mater Interfaces, 2020, 12, 8091-8097.
- 8. F. Gu, M. Di, D. Han, S. Hong and Z. Wang, ACS Sens, 2020, 5, 2611-2619.
- 9. Z. Wang, C. Hou, Q. De, F. Gu and D. Han, ACS Sens, 2018, 3, 468-475.
- 10. X. Zhang, D. Song, Q. Liu, R. Chen, J. Hou, J. Liu, H. Zhang, J. Yu, P. Liu and J. Wang, *Journal of Materials Chemistry C*, 2019, 7, 7219-7229.
- 11. H. Chen, L. Sun, G.-D. Li and X. Zou, *Chemistry of Materials*, 2018, **30**, 2018-2027.
- 12. D. Wang, L. Tian, H. Li, K. Wan, X. Yu, P. Wang, A. Chen, X. Wang and J. Yang, ACS Appl Mater Interfaces, 2019, 11, 12808-12818.
- 13. H. Yu, J. Li, W. Luo, Z. Li, Y. Tian, Z. Yang, X. Gao and H. Liu, Applied Surface Science, 2020, 513.
- 14. J. L. Wang, Y. J. Guo, G. D. Long, Y. L. Tang, Q. B. Tang, X. T. Zu, J. Y. Ma, B. Du, H. Torun and Y. Q. Fu, *J Hazard Mater*, 2020, **388**, 121743.
- 15. D. Yan, P. Xu, Q. Xiang, H. Mou, J. Xu, W. Wen, X. Li and Y. Zhang, Journal of Materials Chemistry A, 2016, 4, 3487-3493.
- 16. Q. Liang, X. Qu, N. Bai, H. Chen, X. Zou and G. D. Li, J Hazard Mater, 2020, 400, 123301.
- 17. G. Li, Z. Cheng, Q. Xiang, L. Yan, X. Wang and J. Xu, Sensors and Actuators B: Chemical, 2019, 283, 590-601.
- 18. Q. Liang, X. Zou, H. Chen, M. Fan and G.-D. Li, Sensors and Actuators B: Chemical, 2020, 304.
- 19. J. Hu, M. Chen, Q. Rong, Y. Zhang, H. Wang, D. Zhang, X. Zhao, S. Zhou, B. Zi, J. Zhao, J. Zhang, Z. Zhu and Q. Liu, Sensors and Actuators B: Chemical, 2020, 307.
- 20. Y. Tie, S. Y. Ma, S. T. Pei, Q. X. Zhang, K. M. Zhu, R. Zhang, X. H. Xu, T. Han and W. W. Liu, Sensors and Actuators B: Chemical, 2020, 308.
- 21. Y. Xu, X. Tian, Y. Fan and Y. Sun, Sensors and Actuators B: Chemical, 2020, 309.
- 22. F. Yin, Y. Li, W. Yue, S. Gao, C. Zhang and Z. Chen, Sensors and Actuators B: Chemical, 2020, 312.
- 23. K. Yang, J. Ma, X. Qiao, Y. Cui, L. Jia and H. Wang, Sensors and Actuators B: Chemical, 2020, 313.
- 24. N. Zhang, Y. Lu, Y. Fan, J. Zhou, X. Li, S. Adimi, C. Liu and S. Ruan, Sensors and Actuators B: Chemical, 2020, 315.
- 25. B. J. Wang, S. Y. Ma, S. T. Pei, X. L. Xu, P. F. Cao, J. L. Zhang, R. Zhang, X. H. Xu and T. Han, Sensors and Actuators B: Chemical, 2020, **321**.
- 26. C. Lou, C. Yang, W. Zheng, X. Liu and J. Zhang, Sensors and Actuators B: Chemical, 2021, 329.