
 1 / 17

1 Supporting Information

2

3 Clarifying the lithium storage behavior of MoS2 with in situ electrochemical impedance 

4 spectroscopy

5
6 Chao Deng, Hongquan Wang, Shengping Wang*

7 Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China

8 * Email: spwang@cug.edu.cn

9

10

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.
This journal is © The Royal Society of Chemistry 2021



 2 / 17

11

MoS2 +  xLi +  +  xe -  
Discharge

→  LixMoS2  (S1)

LixMoS2 +  (4 ‒ x) Li + + (4 ‒ 𝑥)e -  
Discharge

→  2𝐿𝑖2S +  Mo (S2)

𝐿𝑖2S +  Mo ‒  2𝑒 ‒  ⇋𝑀𝑜𝑆2 + 2𝐿𝑖 + (S3)

𝐿𝑖2S ‒ 2𝑒 ‒ ⇋2𝐿𝑖 + + 𝑆 (S4)

12

13 During the discharging process, lithium ions are intercalated into the interlayer of MoS2 to form 

14 LixMoS2 (Formula S1). [1,2] Then, LixMoS2 slowly transforms to metallic Mo and Li2S when 

15 discharged to 0.01 V (vs. Li/Li+) (Formula S2). [3,4] Some researchers believe that when recharged 

16 to 3.0 V (vs. Li/Li+), Li2S reacts with metallic Mo and continues to form MoS2, which is the 

17 conversion between MoS2 and metallic Mo in the later cycles (Formula S3). [5] Other researchers 

18 have believed that Li2S is oxidized to elemental sulfur in the charging process, and metallic Mo no 

19 longer stores lithium as an active material. [6-9] Therefore, a conversion reaction occurs between 

20 sulfur and Li2S, similar to the reaction mechanism of lithium-sulfur batteries (Formula S4). [10]
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23

24 Program S1: Program of batch-fitting EIS data

25 from impedance import preprocessing

26 from impedance.models.circuits import CustomCircuit

27 from impedance.visualization import plot_nyquist

28 import numpy as np

29

30 def readtxt(filename):

31     with open(filename, 'r') as input_file:

32         lines = input_file.readlines()

33     start_line = 1

34     raw_data = lines[start_line:]

35     f, Z = [], []

36     for line in raw_data:

37         each = line.split('\t')

38         f.append(float(each[0]))

39         Z.append(complex(float(each[1]), float(each[2])))

40     input_file.close()

41     return np.array(f), np.array(Z)

42 path="./ raw_data /" #Create a folder named ‘raw_data’ in the same level directory, and put the 

43 original data into this folder in the form of txt. document after grouping.

44 Fit_data=[]

45 for i in range(1,312):

46     frequencies, Z = readtxt(path+str(i)+'.txt')

47     frequencies, Z = preprocessing.ignoreBelowX(frequencies, Z)

48     circuit = 'R0-p(R1,C1)-p(R2-Wo1,C2)' # Input equivalent circuit

49     initial_guess = [.01, .01, 100, .01, .05, 100, 1]

50     circuit = CustomCircuit(circuit, initial_guess=initial_guess)

51     circuit.fit(frequencies, Z)

52     print(' Serial number :%d '%i)

53     print(circuit)

54     Fit_data.append(circuit.parameters_)

55 Result = []

56 f=open('Test_Result.txt','w+')

57 for m in range(len(Fit_data)):

58     jointsFrame = Fit_data[m]

59     f.write('%d'%m)

60     f.write(' ')
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61     Result.append(jointsFrame)

62     for Ji in range(7):

63         strNum =str(jointsFrame[Ji])

64         f.write(strNum)

65         f.write(' ')

66     f.write('\n')

67 f.close()

68

69
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70

71
72 Fig. S1 SEM (a, b) and TEM images (c) and polycrystalline electron diffraction pattern (d) of the 

73 initial MoS2.

74

75 The morphology of the initial MoS2 prepared by the hydrothermal method is illustrated in Fig. 

76 S1. MoS2 had a microsphere structure and aggregated into a block. The individual MoS2 

77 microspheres did not form a complete spherical structure, which was affected by the temperature 

78 and time of the hydrothermal reaction. [11] The single MoS2 microspheres were composed of MoS2 

79 sheets, which promoted the migration of lithium ions (Fig. S1b). [12] In addition, the structure also 

80 increased the contact area of MoS2 and the electrolyte, thereby increasing the utilization of active 

81 materials. [13] The nanosheet structure of MoS2 was further demonstrated by TEM. As shown in Fig. 

82 S1c, the MoS2 nanosheets had a lamellar structure. The corresponding selected area electron 

83 diffraction (SAED) pattern also confirmed the formation of MoS2 (Fig. S1d). The three diffraction 

84 rings of the SAED pattern could be indexed to the (101), (103), and (110) planes of MoS2. [14] 

85

86
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87

88
89 Fig. S2 EIS spectra and the corresponding equivalent circuits of MoS2 at 2.27 V (a, c) and 0.76 V 

90 (b, d) in the first charging process at 0.1 mA cm-2 from 3.0 V to 0.01 V.

91

92
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93

94
95 Fig. S3 First discharge (a) and charge (b) curves of MoS2 at 0.1 mA cm-2 from 3.0-0.01 V with a 

96 step-by-step EIS test.

97

98
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99

100
101 Fig. S4 XRD patterns of MoS2 in the first discharging process at 0.1 mA cm-2.

102

103 To determine the reactions that occurred in each potential range, the product of each reaction 

104 stage needed to be characterized. Based on the phases identified by EIS, the battery was 

105 decomposed, and XRD was performed at the end of each stage. The result is shown in Fig. S4.

106

107 Stage a: 3.0-1.12 V

108 Before the EIS test, the MoS2 electrode was tested by XRD, and the results are shown in Fig. S4. 

109 The initial potential of the MoS2 electrode without discharging was approximately 3.0 V. 

110 Comparing the experimental data with the standard card, the diffraction peak of MoS2 agreed well 

111 with the standard card (PDF#06-0097), indicating that MoS2 was successfully synthesized by the 

112 hydrothermal method. [4] The diffraction peaks at 14.5°, 29°, 39°, and 45° correspond to the (002), 

113 (004), (103) and (106) planes of MoS2, respectively. [15]

114 According to the standard card, the structure of MoS2 did not change when discharging to 1.12 

115 V, demonstrating that the structure of MoS2 was preserved. Additionally, note that the peak at 14.49° 

116 corresponding to the (002) plane of MoS2 did not move, indicating that the layer spacing of MoS2 

117 did not change.

118

119 Stage b: 1.12-1.0 V

120 As shown in Fig. 2g, there was an obvious platform that appeared in this potential range, and in 

121 the differential capacitance curve, it corresponded to peak 1. Comparing the XRD pattern of the 1.0 

122 V and 1.12 V samples shown in Fig. S4, the XRD pattern did not change greatly, indicating that the 
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123 layered structure of MoS2 had not been damaged. Then, the diffraction peak corresponding to the 

124 (002) plane shifted to the left (Fig. S5), suggesting that the interlayer distance of MoS2 increased. 

125 The reason for this phenomenon was that lithium ions were intercalated between the layers of MoS2. 

126 [16,17] In addition, as shown in Fig. 1a, when the charge and discharge window was 1.0-3.0 V, MoS2 

127 had better cycle stability, indicating that the intercalation and extraction of lithium ions at this stage 

128 did not cause the structure of MoS2 to be destroyed. Therefore, the intercalation and extraction of 

129 lithium ions in this potential range were reversible.

130

131
132 Fig. S5 Enlarged view of Fig. S4.

133

134 Stage c: 1.0-0.75 V

135 In a previous study, [18] this potential range was always ignored, but it was analyzed by a 

136 differential capacitance curve in this work (Fig. 2g). By analyzing the XRD patterns, the 

137 characteristic peaks of MoS2 did not completely disappear within this potential range. The 

138 characteristic peaks at 14°, 44°, and 60° were still present, but the peak strengths decreased, 

139 indicating that the structure of MoS2 changed greatly, but MoS2 did not completely disappear at this 

140 stage. This may be because the number of MoS2 particles decreases as lithiation progresses. [6]

141

142 Stage d: 0.75-0.62 V

143 As shown in Fig. S4, the diffraction peaks at 44° and 60° completely disappeared in the XRD 

144 pattern from 0.75 V to 0.62 V, but diffraction peaks at 14° were still present, demonstrating that 

145 some MoS2 had been converted, although some was still present. The electrochemical reaction in 

146 stage d was a conversion reaction. Li+ continued to enter LixMoS2, and LixMoS2 gradually converted 
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147 into elemental Mo and Li2S. [19]

148

149 Stage e: 0.62-0.44 V

150 Fig. S4 shows that no diffraction peak was detected in the XRD pattern at the end of this period, 

151 suggesting that MoS2 was completely converted into elemental Mo and Li2S. [20] In terms of MoS2, 

152 when the minimum potential of the charge/discharge window was lower than 0.6 V, the cycle 

153 stability of MoS2 was reduced, indicating that the structure of MoS2 was destroyed within this range.

154

155 Stage f: 0.44-0.01 V

156 When discharging to 0.01 V, a new diffraction peak appeared in the XRD pattern, which 

157 demonstrated that a new material had been produced at this stage. As shown in Fig. S6, the material 

158 corresponding to this Li2MoO4 diffraction peak (PDF#12-0762) suggests that Mo metal, lithium 

159 salt, and the electrolyte would react and form Li2MoO4 in the last stage of the reaction. [21] However, 

160 comparing the diffraction peaks of Li2MoO4 and MoS2 shows that the intensities of the Li2MoO4 

161 peaks are weak, which means that the content of Li2MoO4 is low.

162

163
164 Fig. S6 XRD pattern of MoS2 discharged to 0.01 V at 0.1 mA cm-2.

165

166 Stage g: 0.01-1.20 V

167 As depicted in Fig. S7, the electrode was composed of Li2MoO4 and Li2S at the end of the 

168 discharging process. The characteristic peaks of Li2MoO4 did not disappear when charging to 1.2 

169 V, indicating that Li2MoO4 did not decompose at this stage. It could also be deduced from the 
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170 differential capacitance that there were no obvious characteristic peaks at this stage (Fig. S7). 

171 However, this stage could provide a charging capacity of approximately 230 mAh g-1. Additionally, 

172 this potential did not reach the oxidation potential of Li2S. This capacitance and potential had a 

173 linear relationship, which was very similar to the characteristics of the capacitor. [22]

174

175
176 Fig. S7 XRD patterns of MoS2 in the first charging process at 0.1 mA cm-2.

177

178 Stage h: 1.20-1.90 V

179 When charging to 1.9 V, the characteristic peaks of Li2MoO4 were still present (Fig. S7), 

180 demonstrating that Li2MoO4 was not converted into other substances.

181

182 Stage i: 1.90-2.24 V

183 When charging to 2.24 V, the characteristic peaks of Li2MoO4 disappeared completely, indicating 

184 that the reaction in this stage was the conversion reaction of Li2MoO4. In the differential capacitance 

185 curve shown in Fig. 3f, a strong oxidation peak could also be observed, which meant that the reaction 

186 was a phase change reaction. However, the XRD pattern did not indicate the identity of the Li2MoO4 

187 delithiation product, which may be due to the product being an amorphous substance.

188

189 Stage j: 2.24-2.33 V

190 When the potential of the electrode increased from 2.24 V to 2.33 V, no new diffraction peak 

191 appeared in the XRD pattern (Fig. S7), suggesting that no crystals of large particles were generated.

192

193 Stage k: 2.33-3.00 V
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194 In the last stage of charging, no characteristic peak of MoS2 was found in the XRD patterns, 

195 indicating that MoS2 did not form after the first deep discharging process, which indicated once 

196 again that the reaction in the first cycle was an electrochemically irreversible process.

197

198
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199

200
201 Fig. S8 Second galvanostatic discharge curve of MoS2 at 0.1 mA cm-2 from 3.0 V to 0.01 V.

202

203
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204

205
206 Fig. S9 XRD patterns of MoS2 discharged to 0.01 V for the second time and charged to 3.0 V for 

207 the second time at 0.1 mA cm-2.

208



 15 / 17

209

210
211 Fig. S10 Impedances in the second (a) and third (c) charging processes and the third (b) and fourth 

212 (d) discharging processes at 0.1 mA cm-2.

213

214
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