# Supporting Information

# Surface enrichment of iridium on IrCo alloy for boosting hydrogen production

Ngoc Kim Dang<sup>a</sup>, Muhammad Umer<sup>a</sup>, Pandiarajan Thangavel<sup>a</sup>, Siraj Sultan<sup>ab</sup>, Jitendra N. Tiwari<sup>a</sup>, Jong Hoon Lee<sup>c</sup>, Min Gyu Kim<sup>d</sup> & Kwang S. Kim<sup>\*a</sup>

<sup>a</sup>Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Korea.

<sup>b</sup>School of Energy & Chemical Engineering, UNIST, Ulsan, 44919, Korea

<sup>c</sup>UNIST Central Research Facilities, Ulsan, 44919, Korea

<sup>d</sup>Beamline Research Division Pohang Accelerator Laboratory (PAL) Pohang 37673, Korea

\*Email address: kimks@unist.ac.kr

# Materials

Iridium chloride hydrate (IrCl<sub>3.</sub>xH<sub>2</sub>O), Cobalt acetate tetrahydrate (Co(acac)<sub>2</sub>.4H<sub>2</sub>O), Cobalt(II) chloride hexahydrate (CoCl<sub>2</sub>.6H<sub>2</sub>O), D-Glucose (G8270), Melamine (M2659), Nafion were suppled from Sigma-Aldrich. 95% Sulfuric acid (H<sub>2</sub>SO<sub>4</sub>), Nitric acid (HNO<sub>3</sub>) and ethanol were purchased from SAMCHUN Chemical. Carbon Black – Vulcan XC-72R was supplied by FuelCellStore. 20 % Pt on Vulcan XC-72 and 20 % Ir on Vulcan XC-72 were purchased from Premetek. Toray Carbon paper PTFE treated TGP-H60 was supplied by Alfa Aesar.

# Calibration of reference electrode

The electrolyte (0.5 M  $H_2SO_4$ ) was saturated by bubbling hydrogen gas for at least 30 min before calibration.<sup>[1]</sup> The measured potentials versus saturated calomel electrode (SCE) were converted to the potentials versus reversible hydrogen electrode (RHE) by the following equation:

 $E_{RHE} = E_{SCE} + 0.2603 V$ 

## **Turnover frequency calculation**

The TOF per metal (Ir-based) site in the  $IC1-G_N$  catalyst for the HER is estimated by the equation:

$$TOF = \frac{Total \, number \, of \, hydrogen \, turnover/geometric \, area \, (cm^2)}{Number \, of \, active \, sites/geometric \, area \, (cm^2)}$$

The total number of hydrogen turnovers was calculated from the current density using the formula.

Number of hydrogens  
= 
$$j(mA cm^{-2})1(Cs^{-1}(10^{-3}mA)^{-1})(1 mol e^{-}(96485.3 C)^{-1})(\frac{1 mole H_2}{2 mole e^{-}})(\frac{6.022 x 10^{23} molecules H_2}{1 mole H_2})$$

 $= 3.12 x 10^{15} H_2 s^{-1} cm^{-2} per mA cm^{-2}$ 

The number of Ir metal ions was determined from the inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurement (5 wt%).

Accordingly, the active site density based on bulk Ir is:

$$\frac{5}{100} x (1.6 mg cm^{-2}) x \left(\frac{1 mmol}{192.2 mg}\right) x 6.022 x 10^{20} sites mmol^{-1}$$
$$= 2.5 x 10^{17} Ir_{sites} cm^{-2}$$

At an overpotential of 0.0293 V (vs RHE), the HER current density is 100 mA cm<sup>-2</sup>, and the Ir based TOF value of catalyst was calculated to be

$$\frac{3.12 \times 10^{15} H_2 \, s \, cm^{-2} \, mA^{-1} \, cm^2 \, x \, 100 \, mA \, cm^{-2}}{2.5 \, x \, 10^{17} Ir_{sites} cm^{-2}} = \frac{1.248 \, s^{-1} / Ir_{sites}}{100 \, mA \, cm^{-2}}$$

### Mass activity calculation

Mass activity of the catalysts were calculated by following formula:

 $\frac{A}{\text{Mass activity}} \frac{A}{mg} =$ 

current density 
$$(\frac{A}{cm^2})$$

sample loading on electrode surface  $\left(\frac{mg}{cm^2}\right) * Ir (or Pt)con$ 

Take IC1-G<sub>N</sub> for an example, mass activity of IC1-G<sub>N</sub> was estimated at 29.3 mV vs RHE

 $\frac{A}{\text{Mass activity}} \frac{A}{mg_{Ir}} = \frac{\frac{0.1 \, A}{5 * 60}}{\frac{5 * 60}{1000 * 0.25} * 5.0132\%} = 1.662 \, \text{A mg}_{\text{Ir}}^{-1}$ 

#### **Geometry Model and Computational Method**

#### Model

The primitive unit cells of individual metal surfaces were optimized using 11x11x1 k-point and then we built a 5-layered 3×3-supercells of each unit cell (Pt-111, Ir-111, Co-111 and 1:1 ratio of Ir-Co-111). The bottom two layers of metal atoms were fixed at the bulk lattice positions, whereas the top three layers and the adsorbed hydrogen were relaxed. A vacuum space of 15 Å was set in the z-axis to eliminate the interactions between the neighboring layers.

#### **Computational Method**

All calculations were carried out by using Vienna Ab-initio Simulation Package (VASP).<sup>[2]</sup> Spinpolarized density functional theory (DFT) calculations were performed using revised PBE (RPBE)<sup>[3]</sup> with the Tkatchenko–Scheffler dispersion correction (TS)<sup>[4]</sup> and projected augmentedwave pseudopotentials<sup>[5]</sup> with the kinetic energy cutoff of 500 eV. The Brillouin zone was sampled by a  $3\times3\times1$  array of *k*-points in the  $\Gamma$ -centered grid. All structures were fully relaxed to the ground state. The convergences of energy and force were set to  $1\times10^{-4}$  eV and 0.02 eV/Å, respectively.

H-adsorption energies  $(\Delta E_{H^*})$  was calculated by  $\Delta E_{H^*} = {}^{E_{H-Surface} - (E_{Surface} + 0.5E_{H_2})}$  and the free energies  $(\Delta G_{H^*})$  were obtained by using  $\Delta G_{H^*} = \Delta G_{H^*} = \Delta E_{H^*} + \Delta ZPE - T\Delta S$ , where  $\Delta E_{H^*}$ is the hydrogen adsorption energy,  $\Delta ZPE$  and  $\Delta S$  are the zero point energy changes and entropy changes, respectively.





Figure S2. HAADF-STEM image and corresponding element mapping images of IC1-G<sub>N</sub>.



Figure S3. a) HR-TEM image, b) corresponding FFT pattern, c) line EDS mapping, and d-e) concentration profile analyses obtained on the selected line of  $IC1-G_N$ . The (111) planes in b) correspond to those of the cubic structure of IrCo alloy, which clearly indicates the formation of IrCo alloy.



**Figure S4**. XAFS investigation on the Co moieties at the Co K-edge of  $IC1-G_N$  catalyst and Co foil. a) XANES spectra. b) Fourier transform magnitudes.



**Figure S5**. LSV curve of catalysts prepared at different temperatures 650 °C, 750 °C, and 850 °C. In this regard, 750 °C is the optimized synthesis condition.



**Figure S6**. CV profiles recorded in non-Faradaic region with scan rate of 5, 10, 15, 20, 25 mV s<sup>-1</sup> in H<sub>2</sub>-saturated 0.5 M H<sub>2</sub>SO<sub>4</sub> electrolyte and corresponding C<sub>dl</sub> calculation of a,b) IC1-G<sub>N</sub>. c,d) IC2-G<sub>N</sub>. e,f) IC3-G<sub>N</sub>. g,h) IC. i,j) Pt/C. k,l) Ir/C.



**Figure S7**. Structural analysis of **IC1-G**<sub>N</sub> catalyst after stability testing. a) TEM image. b,c) High-resolution TEM images. d) High-angle annular dark-field (HAADF) TEM image and e-h) corresponding elemental mapping of C, N, Ir, Co.





**Figure S9**. Top view for optimized configurations of most active H-adsorption sites and their corresponding HER-free energy (eV) for different configurations of Ir, Co, Pt, and IrCo. The bulk surfaces including Ir-111, IrCo-111, Co-111 and Pt-111 surfaces. (Pt: grey, Ir: greenish yellow, Co: light blue, H: cyan).



Figure S10. Comparison of HER free energies at different active sites on exposed surfaces of the  $IC1-G_N$  electrocatalyst.



**Figure S11.** Projected density of states (PDOS) of Ir-111, IrCo-111, and Co-111. The redistribution of d-states in bonding and antibonding causes a slight shift in d-band center towards the Fermi level of IrCo-111 with respect to its parent metals. The charge density map for IrCo-111 is shown in Figure S10 and Figure 4(b). The localized d-electrons near the Fermi level results in an enhanced HER activity.



**Figure S12**. A charge density map (a) Pt-111, (b) Ir-111, (c) 1:1 ratio alloy of IrCo-111, (d) 1:1 ratio alloy of IrCo-111 with defect created by removal of one Ir atom from the surface.

| Samples            | Ir (wt%) | Co (wt%) |
|--------------------|----------|----------|
| IC1-G <sub>N</sub> | 5.0132   | 61.354   |
| IC2-G <sub>N</sub> | 5.3695   | 46.7463  |
| IC3-G <sub>N</sub> | 4.8739   | 88.607   |
| IC                 | 5.0640   | 64.8959  |

**Table S1**. The weight percentage of Ir element contained in all catalysts obtained from inductively

 coupled plasma optical emission spectroscopy (ICP-OES).

| Catalysts          | Mass activity (A mg <sub>Ir (or Pt)</sub> <sup>-1</sup> ) |  |
|--------------------|-----------------------------------------------------------|--|
| IC1-G <sub>N</sub> | 1.662                                                     |  |
| IC2-G <sub>N</sub> | 0.773                                                     |  |
| IC3-G <sub>N</sub> | 1.615                                                     |  |
| IC                 | 1.333                                                     |  |
| Ir/C (20 wt. %)    | 0.327                                                     |  |
| Pt/C (20 wt. %)    | 0.270                                                     |  |

**Table S2**. Comparison of the mass activity of  $IC1-G_N$ ,  $IC2-G_N$ ,  $IC3-G_N$ , IC, commercial Ir/C and Pt/C at 29.3 mV vs RHE.

| Samples            | <b>TOF (s<sup>-1</sup>)</b> |
|--------------------|-----------------------------|
| IC1-G <sub>N</sub> | 1.248                       |
| IC2-G <sub>N</sub> | 0.576                       |
| IC3-G <sub>N</sub> | 1.203                       |
| IC                 | 0.989                       |
| Ir/C               | 0.242                       |
| Pt/C               | 0.205                       |

 Table S3. Comparison of turnover frequency (TOF) values of catalysts.

**Table S4**. ICP-OES analysis of electrolyte after stability testing.

| Sample             | Ir (mg/L) | Co (mg/L) |
|--------------------|-----------|-----------|
| IC1-G <sub>N</sub> | 0.049     | 0.083     |

[1]. S. Sultan, J. N. Tiwari, A. N. Singh, S. Zhumagali, M. Ha, C. W. Myung, P. Thangavel, K. S. Kim, *Adv. Energy Mater.*, 2019, **9**, 1900624.

- [2]. G. Kresse, J. Furthmüller, Comput. Mater. Sci., 2002, 6, 15.
- [3]. B. Hammer, L. B. Hansen, J. K. Nørskov, Phys. Rev. B, 2002, 59, 7413.
- [4]. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett., 2009, 102, 073005.
- [5]. P. E. Blöchl, Phys. Rev. B, 2002, 50, 17953.