Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Unoccupied 3d orbitals makes Li-unalloyable transition metals usable as

anode materials for lithium ion batteries

Liping Guo,^a Zhongqing Jiang^b and Zhong-Jie Jiang^{*c}

^{*a*} Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China. Email: <u>eszjiang@scut.edu.cn</u> and <u>zhongjiejiang1978@hotmail.com</u>

^b Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.

^c Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China.

This PDF file includes:

Figures. S1 to S10

Tables S1-S2

Figure S1. (a) XRD pattern of the Fe₃-MOF and standard XRD pattern of Fe-MIL-88. (b) XRD pattern of S-Fe₂O₃@C and S-ZnFe₂O₄@C. (c) XRD pattern of S-Fe@C after TG. (d) TG curve of the S-Fe-small@C.

Figure S2. Particle size distribution of (a) and (b) Fe₃-MOF, (c) Fe₂O₃ NPs in the S-

Fe₂O₃@C, (d) Fe NPs in the S-Fe@C, (e) ZnFe₂O₄ NPs in the S-ZnFe₂O₄@C and (f) Fe NPs in S-Fe-small@C.

Figure S3. TEM images of (a) the porous carbon obtained by the removal of the Fe_2O_3 nanoparticles from the S-Fe₂O₃@C, and (b) the S-carbon synthesized by the removal of Fe from the S-Fe@C through the HCl etching.

Figure S4. XPS survey spectra of (a) S-Fe@C, (b) S-Fe₂O₃@C, (c) S-ZnFe₂O₄@C and (d) S-Fe-small@C. High-resolution XPS spectra of (e) Fe 2p, (f) C 1s, and (g) O 1s for S-ZnFe₂O₄@C and S-Fe-small@C. (h) High-resolution XPS spectra of Zn 2p for S-ZnFe₂O₄@C.

Figure S5. Cycling performance and coulombic efficiencies of S-Fe@C with a mass loading \sim 3.0 mg cm⁻² at 1.0 A g⁻¹.

Figure S6. SEM image of S-Fe@C in the presence of carbon black and PVDF binders before and after 50 cycles at 1.0 A g⁻¹. The presence of carbon black and PVDF binders makes the profile of the particles less distinct.

Figure S7. Charge/discharge voltage profiles of S-carbon at 100 mA g^{-1} .

Figure S8. (a) Lattice constants of the cubic structure Fe. (b) Adsorption of the Li atom on a single layer graphene.

Figure S9. Elemental mapping images of S-ZnFe₂O₄@C.

Figure S10. (a) CVs of S-Fe-small@C at 0.1mV s⁻¹. (b) Charge/discharge voltage profiles of (b) S-Fe-small@C. (c) CVs of S-Fe-small@C at different scan rates. (d) b-value of S-Fe-small@C.

 Table S1. Stable reversible capacity comparison of the S-Fe@C and S-Fe-small@C with

 other anode materials for LIBs.

Electrode material	Mass loading mg cm ⁻²	Current density (mA g ⁻¹)	Cycles	Capacity (mAh g ⁻¹)	Reference	
S-Fe@C	~1.0	100 1000 1000	100 1000	967.3±16.2 700.4±10.5	This work	
S-Fe-small@C	~3.0	100 100 1000	100 100 1000	1091.9 ± 17.6 925.1±13.7	This work	
Sb@C		1000	300	405	1	
Sn@aCT	1.5	100	350	870	2	
TiO2-Sn@CNFs		200	1100	643	3	
Sn-Sb micro/nano-structures	1.0	100	100	751	4	
Sb/Sb ₂ O ₃ /CNT/GNR	0.9-1.1	50	100	619	5	
SnSe/SnOx@CNFs	1.73	200	70	740.7	6	
Sb ₂ Se ₃	1.1	1000	1000	260.8	7	
SnSe _{0.5} S _{0.5} /C	1.0	200	150	785	8	
Bi ₂ S ₃ @C NW	1.0-1.5	1000	700	501	9	
Bi ₂ S ₃ @Co ₉ S ₈	0.9-1.2	100	100	798	10	
Fe-MIL-88 B	1	60	400	744.5	11	
Fe-BTC	2	1000	400	408.8	12	
MIL-53(Fe) @RGO	0.75	100	100	550	13	
Mg-MOF-74/Cu	1.0-1.5	500	300	531.7	14	
Fe ₂ O ₃ @PAN	0.6-0.8	1000	500	506.6	15	
Fe ₃ O ₄ /C@VO _x	1.2	1000	500	845	16	
C@Fe ₃ C/Fe	1.5	2000	1000	392	17	
Fe ₃ N@C	0.6-1.2	100	500	358	18	
Ge ₃ N ₄ @C	3.5	550	200	702	19	
N-Ti ₃ C ₂ /Fe ₂ O ₃	1.5	2000	400	549	20	
Co ₃ O ₄ @Co ₃ V ₂ O ₈	0.8	100	100	948	21	
ZnMn ₂ O ₄	1.0	200	100	867	22	
Zn ₂ SiO ₄ @NC	2.0	1000	400	540	23	
NiSx@C	1.0	1000	2000	460	24	
CoS ₂ /CN Is/graphene	2.0	100	100	368.2	25	
NHMCFS/MOSe ₂	1520	200	400	582.5	20	
ZnS/NC	1.5-2.0	200	100	/ 5 / 5 0 7	28	
	1.5	1000	1000	597	20	
N12PpCGN	1.0	100	250	511	30	
FeS2/Fe7S8-rGO	1.0	200	250	650	31	
GeP ₃ /C	1.5	1000	1000	512	32	
CoP@C MoS2/Mo2TiC2Tx		1000	800 100	500	33	
(FeCoNiCrMn)204	~3.0	500	300	402	34	
Fe-BTC	2.0	1000	400	408.8	12	
Zn ₂ SiO ₄ @NC	2.0	1000	400	540	23	
CoS ₂ /CNTs/graphene	2.0	100	100	368.2	25	
VN nanosheet	2.0	100	100	520	35	

Electrode material	Mass loading mg cm ⁻²	0.1 A g ⁻¹	0.2 A g ⁻¹	0.5 A g ⁻¹	1.0 A g ⁻¹	2.0 A g ⁻¹	5.0 A g ⁻¹	10.0 A g ⁻¹	Refere nce
S-Fe@C	~1.0	851.0 ±12.9	825.9 ±12.5	809.0 ±12.1	762.6 ±11.4	666.8 ± 10.3	534.4 ±8.3	410.1 ±6.6	This work
S-Fe-small@C	~1.0	$1092.9 \\ \pm 17.9$	1046.2 ± 16.5	971.9 ± 16.1	900.2 ± 14.3	815.7 ±12.2	659.5 ± 9.8	490.6 ±7.7	This work
Sb@C		623	558	496	439	385			1
TiO2- Sn@CNFs Sn-Sh micro			570		280				3
/nano structures	1.0	798.8	717.8	636.5	545.5	455.0			4
Sb/Sb ₂ O ₃ /CNT /GNR	0.9-1.1	642	514	428	369	327			5
SnO2@SnS2@ NG		898	820	715	612	497	343		36
SnSe/SnOx@C NFs	1.73	803	709	579	391	301			6
Sb ₂ Se ₃	1.1	638.2	611.5	543.6	472.3	389.5			7
SnSe _{0.5} S _{0.5} /C	1.0	989	830	729	646	553	389		8
Bi2S3@C09S8	0.9-1.2	785	672	612	573	512			10
MoS2@SnS- QDs/CNN	1.0-1.2	1130	1078	947	765	591			37
C@Fe ₃ C/Fe	1.5	1177	1012	954	845	682	521		17
Co ₃ O ₄ @ Co ₃ V ₂ O ₈	0.8	1068	916	782	678	578	550		21
PCN-600(1ron porphyrin- based MOF)	0.5				625	470			38
Fe-MIL-88 B	1	692.0	582.6	350.4	232.7	143.5	133.4		11
Fe-BTC	2	873.8 /915.7	990.1 /996.3		523.2 /525.0	302.8 /304.8			12
MIL-53(Fe) @RGO	0.75	510		400	360	300			13
Mg-MOF- 74/Cu	1.0-1.5	796.2		560.5	372.6	259.1			14
NiO@N-C		1065	1031		689	634			39
Fe ₃ O ₄ /C@VO _x	1.2		810	718	605	483	340		16
Fe ₂ N@C	1.4-2.1	567	526	500	474	450	404	356	40
Fe ₃ O ₄ nanoparticle		1084	883	809	648	545	410		41
ZnMn ₂ O ₄	1.0	857	784	636	481	355	94	36	22
Zn ₂ SiO ₄ @NC	2.0	640	620	560	450	370	280		23
NiSx@C	1.0	790	720	605	540	446	350	280	24
CoS ₂ /CNTs /graphene	2.0		381			251	212		25
NHMCFs /MoSe ₂		666.4	635.3	352.9				244.3	26
ZnS/NC	1.5-2.0	771	725		600	511			27
MoS2 /Mo2TiC2Tx		523	484	407	315	182			33
NiCoPS ₃ /NC	0.9-1.2	976	781	723	665	625	570		42
Ni ₂ P/Ni	1.5	611	583	521	483	449			28
Ni₂Pp⊂GN		520	449	397	291	283	246		29
CoP@C		770	690	560	490	420	340		32

 Table S2. Rate performance comparison of the S-Fe@C and S-Fe-small@C with other anode materials for LIBs.

References

- J. Liu, L. Yu, C. Wu, Y. Wen, K. Yin, F.-K. Chiang, R. Hu, J. Liu, L. Sun, L. Gu, J. Maier, Y. Yu and M. Zhu, *Nano Lett.*, 2017, **17**, 2034-2042.
- R. Zhuo, W. Quan, X. Huang, Q. He, Z. Sun, Z. Zhang and J. Wang, *Nanotechnology*, 2021, **32**, 145402.
- M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang and C. Wang, *Nano Lett.*, 2017, 17, 3830-3836.
- Z. Yi, Q. Han, D. Geng, Y. Wu, Y. Cheng and L. Wang, *J. Power Sources*, 2017, 342, 861-871.
- O. Jaramillo-Quintero, M. Benítez-Cruz, J. García-Ocampo, A. Cano and M. E. Rincón, J. Alloy. Compd., 2019, 807, 151647.
- 6. H. Yuan, Y. Jin, J. Lan, Y. Liu, Y. Yu and X. Yang, *Inorg. Chem. Front.*, 2018, 5, 932-938.
- A. N. Luo, J.-J. Gaumet, P. Magri, S. Diliberto, F. Li, P. Franchetti, J. Ghanbaja and L. Mai, *J. Energy Chem.*, 2019, **30**, 27-33.
- Q. Tang, Y. Cui, J. Wu, D. Qu, A. P. Baker, Y. Ma, X. Song and Y. Liu, *Nano Energy*, 2017, 41, 377-386.
- L. Zhao, H.-H. Wu, C. Yang, Q. Zhang, G. Zhong, Z. Zheng, H. Chen, J. Wang, K. He, B.
 Wang, T. Zhu, X. C. Zeng, M. Liu and M.-S. Wang, *ACS Nano*, 2018, **12**, 12597-12611.
- Y. Huang, X. Hu, J. Li, J. Zhang, D. Cai, B. Sa, H. Zhan and Z. Wen, *Energy Storage Mater.*, 2020, 29, 121-130.
- 11. L. Shen, H. Song and C. Wang, *Electrochim. Acta*, 2017, 235, 595-603.
- X. Hu, X. Lou, C. Li, Y. Ning, Y. Liao, Q. Chen, E. S. Mananga, M. Shen and B. Hu, *Rsc Adv.*, 2016, 6, 114483-114490.
- C. Zhang, W. Hu, H. Jiang, J.-K. Chang, M. Zheng, Q.-H. Wu and Q. Dong, *Electrochim. Acta*, 2017, **246**, 528-535.

- X. Li, C. He, J. Zheng, D. Wu, Y. Duan, Y. Li, P. Rao, B. Tang and Y. Rui, ACS Appl. Mater. Interfaces, 2020, 12, 52864-52872.
- 15. Z. Li, X. Hu, Z. Shi, J. Lu and Z. Wang, Appl. Surf. Sci., 2020, 531, 147290.
- B. Cong, Y. Hu, S. Sun, Y. Wang, B. Wang, H. Kong and G. Chen, *Nanoscale*, 2020, 12, 16901-16909.
- D. Chen, C. Feng, Y. Han, B. Yu, W. Chen, Z. Zhou, N. Chen, J. B. Goodenough and W. He, *Energy Environ. Sci.*, 2020, 13, 2924-2937.
- H. Huang, S. Gao, A.-M. Wu, K. Cheng, X.-N. Li, X.-X. Gao, J.-J. Zhao, X.-L. Dong and G.-Z. Cao, *Nano Energy*, 2017, **31**, 74-83.
- C. Kim, G. Hwang, J.-W. Jung, S.-H. Cho, J. Y. Cheong, S. Shin, S. Park and I.-D. Kim, *Adv. Funct. Mater.*, 2017, 27, 1605975.
- Z. Zhang, L. Weng, Q. Rao, S. Yang, J. Hu, J. Cai and Y. Min, *J. Power Sources*, 2019, 439, 227107.
- 21. Y. Lu, L. Yu, M. Wu, Y. Wang and X. W. D. Lou, Adv. Mater., 2018, 30, 1702875.
- 22. Q. Tang, Y. Shi, Z. Ding, T. Wu, J. Wu, V. Mattick, Q. Yuan, H. Yu and K. Huang, *Electrochim. Acta*, 2020, **338**, 135853.
- F. Liu, S. Liu, J. Meng, F. Xia, Z. Xiao, Z. Liu, Q. Li, J. Wu and L. Mai, *Nano Energy*, 2020, 73, 104758.
- Q. Li, L. Li, P. Wu, N. Xu, L. Wang, M. Li, A. Dai, K. Amine, L. Mai and J. Lu, *Adv. Energy Mater.*, 2019, 9, 1901153.
- C. Xu, Y. Jing, J. He, K. Zhou, Y. Chen, Q. Li, J. Lin and W. Zhang, J. Alloys Compd., 2017, 708, 1178-1183.
- 26. X. Ni, Z. Cui, H. Luo, H. Chen, C. Liu, Q. Wu and A. Ju, Chem. Eng. J., 2021, 404, 126249.
- P. Wang, A. Yuan, Z. Wang, X. Shen, H. Chen and H. Zhou, *Nanoscale*, 2021, 13, 1988-1996.
- 28. X. Liu, W. Li, X. Zhao, Y. Liu, C.-W. Nan and L.-Z. Fan, Adv. Funct. Mater., 2019, 29,

1901510.

- 29. C. Wu, P. Kopold, P. A. v. Aken, J. Maier and Y. Yu, Adv. Mater., 2017, 29, 1604015.
- Q. Tang, Q. Jiang, T. Wu, T. Wu, Z. Ding, J. Wu, H. Yu and K. Huang, ACS Appl. Mater. Interfaces, 2020, 14, 52888-52898.
- W. Qi, H. Zhao, Y. Wu, H. Zeng, T. Tao, C. Chen, C. Kuang, S. Zhou and Y. Huang, *Sci. Rep.*, 2017, 7, 43582.
- Z. Liu, S. Yang, B. Sun, X. Chang, J. Zheng and X. Li, *Angew. Chem.*, 2018, 57, 10187-10191.
- C. Chen, X. Xie, B. Anasori, A. Sarycheva, T. Makaryan, M. Zhao, P. Urbankowski, L. Miao, J. Jiang and Y. Gogotsi, *Angew. Chem.*, 2018, 57, 1846-1850.
- D. Wang, S. Jiang, C. Duan, J. Mao, Y. Dong, K. Dong, Z. Wang, S. Luo, Y. Liu and X. Qi, J. Alloy. Compd., 2020, 844, 156158.
- 35. X. Peng, W. Li, L. Wang, L. Hu, W. Jin, A. Gao, X. Zhang, K. Huo and P. K. Chu, *Electrochim. Acta*, 2016, **214**, 201-207.
- S. Huang, M. Wang, P. Jia, B. Wang, J. Zhang and Y. Zhao, *Energy Storage Mater.*, 2019, 20, 225-233.
- 37. G. Ke, H. Chen, J. He, X. Wu, Y. Gao, Y. Li, H. Mi, Q. Zhang, C. He and X. Ren, *Chem. Eng. J.*, 2021, 403, 126251.
- 38. L. Sun, J. Xie, Z. Chen, J. Wua and L. Li, Dalton Trans., 2018, 47, 9989-9993.
- K. Chu, Z. Li, S. Xu, G. Yao, Y. Xu, P. Niu and F. Zheng, J. Alloy. Compd., 2021, 854, 157264.
- 40. Y. Dong, B. Wang, K. Zhao, Y. Yu, X. Wang, L. Mai and S. Jin, *Nano Lett.*, 2017, **17**, 5740-5746.
- 41. W. Han, X. Qi, J. Wu, Q. Li, M. Liu, Y. Xia, H. Du, B. Li and F. Kang, *Nano Res.*, 2017, 11, 892-904.
- 42. Q. Gui, Y. Feng, B. Chen, F. Gu, L. Chen, S. Meng, M. Xu, M. Xia, C. Zhang and J. Yang,

Adv. Energy Mater., 2021, 11, 2003553.