Supplementary Information

## Direct observation of the in-plane crack formation of O3-Na<sub>0.8</sub>Mg<sub>0.2</sub>Fe<sub>0.4</sub>Mn<sub>0.4</sub>O<sub>2</sub> due to oxygen gas evolution for Na-ion batteries

Suyeon Lee,<sup>a</sup> Sung Wook Doo,<sup>a</sup> Min Soo Jung,<sup>a</sup> Shin Gwon Lim,<sup>a</sup> Kanghyeon Kim<sup>a</sup> and Kyu Tae Lee<sup>\*a</sup>

<sup>a</sup> School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National Univers ity, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.

\*Corresponding author: ktlee@snu.ac.kr

|                                                                                                                                       | a axis (Å)   | c axis (Å)   | Volume (ų)   |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|
| As-prepared Na <sub>0.8</sub> Mg <sub>0.2</sub> Fe <sub>0.4</sub> Mn <sub>0.4</sub> O <sub>2</sub><br>(Fig. S1)                       | 2.960628(60) | 16.45053(69) | 124.8758(73) |
| Na <sub>0.8</sub> Mg <sub>0.2</sub> Fe <sub>0.4</sub> Mn <sub>0.4</sub> O <sub>2</sub><br>after storage in air (Fig. S6a)             | 2.95090(13)  | 16.3982(20)  | 123.662(19)  |
| PDMS-coated Na <sub>0.8</sub> Mg <sub>0.2</sub> Fe <sub>0.4</sub> Mn <sub>0.4</sub> O <sub>2</sub><br>after storage in air (Fig. S6b) | 2.95081(11)  | 16.4258(13)  | 123.862(14)  |
| $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$<br>after storage in dry CO <sub>2</sub> (Fig. 7a)                                               | 2.94921(11)  | 16.4320(15)  | 123.775(15)  |
| $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$<br>after storage in wet Ar (Fig. 7a)                                                            | 2.94800(12)  | 16.4268(15)  | 123.634(15)  |

Table S1. Lattice parameters of  $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$  under various conditions.



Fig. S1 XRD pattern of  $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$  powders.



Fig. S2 (a) HAADF-STEM image of bare  $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$  particles before storage and (b) the corresponding two-dimensional strain map using GPA.



**Fig. S3** XRD patterns of  $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$  powders after storage in wet  $CO_2$  (i) without and (ii) with heating at 500 °C in  $N_2$  atmosphere.  $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$  powders were washed with deionized water to remove residual sodium compounds before heat treatment. (FeO: double dagger,  $Fe_{2.92}O_4$ : dagger, and  $NaHCO_3$ : asterisk)



**Fig. S4** XRD patterns of  $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$  electrode after charging at 4.1 V (vs.  $Na/Na^+$ ) and  $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$  powders before and after storage in wet  $CO_2$ .



Fig. S5 FT-IR spectra of  $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$  after storage (a) in dry CO<sub>2</sub>, (b) in wet Ar and (c) in wet CO<sub>2</sub> for 1 day.



Fig. S6 XRD patterns of (a) bare and (b) PDMS-coated  $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$  electrodes after storage in air at a RH of 50% and 25 °C for 2 weeks.



**Fig. S7** Voltage profiles of (a) bare and (b) PDMS-coated  $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$  electrodes after storage in air at a RH of 50% and 25 °C for 2 weeks at 0.5 C-rate (90 mA g<sup>-1</sup>) for various cycle numbers.



**Fig. S8** (a) Voltage profiles of bare and PDMS-coated  $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$  without air exposure for the first cycle at a 0.1 C-rate (18 mA g<sup>-1</sup>). (b) Cycle performances of bare and PDMS-coated  $Na_{0.8}Mg_{0.2}Fe_{0.4}Mn_{0.4}O_2$  without air exposure at a 0.1 C-rate (18 mA g<sup>-1</sup>).