Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Ultrafine Ir Nanoparticles Decorated on FeP/FeOOH with Abundant

Interface via Facile Corrosive Approach for Alkaline Water-splitting

Zongshi Zhao^{1, #}, Wei Jin ^{3, #}, Li Xu⁵, Chan Wang^{1, *}, Yang Zhang^{4, *}, Zexing Wu^{2, *}

1. School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China. E-mail: wangchan@jiangnan.edu.cn

2. State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, 53 Zhengzhou Road, 266042, Qingdao, P. R. China. E-mail: splswzx@qust.edu.cn

3. State Key Laboratory of Pollution Control and Resources Reuse School of Environmental Science and Engineering, Tongji University 1239 Siping Road, Shanghai 200092, China

4. Institute of Process Engineering, Chinese Academy of Sciences, 1st Ber-er-tiao Zhongguancun, Beijing 100190, P. R. China E-mail: yangzhang@ipe.ac.cn

Shanghai Institute of Planned Parenthood Research, 2140 Xietu Road, Shanghai 200032, People's Republic of China

The authors contributed equally to this work.

1. Experimental Section

1.1 Materials and synthesis

Materials: Fe Foam (FF) with the thickness of 2 mm was purchased from Kunshan Tengerhui Electronic Technology Co., Ltd. Sodium chloride (NaCl), Sodium hypophosphite monohydrate (NaH₂PO₂·H₂O), Potassium hydroxide (KOH) were purchased from Sinopharm Chemical Reagent Co., Ltd. Iridium chloride (IrCl₃) was purchased from Shanghai Macklin Biochemical Co., Ltd. Deionized water was utilized in all the experimental process. All the chemicals and reagents used in the experiment were directly used without further purification.

Synthesis of FF-NaCl-Ir Catalysts: The FF-NaCl-Ir catalysts were synthesized by a one-step oxygen corrosion method. Put a slice of FF (2 cm*2 cm), NaCl (0.0087 g), IrCl₃ (0.0448 g) into a beaker with 30 mL deionized (DI) water and stirred at room temperature (25 °C) for one hour. Then, the product was collected and washed by deionized water several times. Finally, the product was dried at 60 °C under vacuum for 12 h and denoted as FF-NaCl-Ir.

Synthesis of FF-NaCl-Ir-P Catalysts: Under the protection of nitrogen, put FF-NaCl-Ir catalysts and NaH₂PO₂·H₂O in a tube furnace and then heated up to 360 °C in Ar for 2 h with a heating rate of 3 °C min to obtain FF-NaCl-Ir-P.

1.2 Material characterization

The morphologies of the catalyst is characterized by the scanning electron microscopy (SEM, S-4800, Hitachi) and transmission electron microscopy (TEM, JSM-2100). The composition and valence of elements are proved by X-ray photoelectron spectroscopy

(XPS, AXISULTRA DLD). The crystal structure of the material is proved by X-ray diffraction (XRD, X'Pert PRO). The contact angle is measured by Dataphysics-OCA40. The XRD test is a direct test of the synthesized catalyst block. The TEM test is to make the synthesized catalyst block into powder.

1.3 Electrochemical measurements

All the electrochemical tests were performed by using a CHI 760E electrochemical workstation with a three-electrode system at room temperature. A 1.0 M KOH solution was used as the electrolyte, FF products as the working electrode, a graphite rod as the counter electrode, and Ag/AgCl as the reference electrode. For comparison, all potentials were adjusted to the reversible hydrogen electrode (RHE).

$$E(RHE) = E(Ag/AgCl) + 0.059* pH + 0.197$$

The polarization curve of the electrode was obtained by linear sweep voltammetry (LSV) test with a scanning rate of 5 mV s⁻¹. During the electrochemical test, we immersed catalyst FF-NaCl-Ir-P with an area of 1cm*0.5cm into the electrolyte. In LSV test, the voltage setting intervals of HER, OER and water splitting are (-0.9V, -1.5V), (0V, 0.8V) and (0V, 3V) respectively. When testing commercial catalyst, the immersion area and voltage setting interval are the same as that of catalyst FF-NaCl-Ir-P. Long term stability measurements were performed at a specific potential. Overall water splitting measurements were performed using a CHI 760E potentiostat in a two-electrode system by applying FF-NaCl-Ir-P as the cathode and anode.

Figure S1. Pictures of the preparation process

Figure S2. SEM images of Fe Foam (a, d), FF-NaCl (b, e) and FF-NaCl-Ir

(c, f)

Figure S3. SEM images of FF-NaCl-Ir-P

Figure S4. XRD pattern of FF-NaCl

Figure S5. XRD pattern of FF-NaCl-Ir

Figure S6. TEM image of FF-NaCl-Ir-P.

Figure S8. CV curves in the potential range from 0.6 V to 0.7 V at various scan rates in 1 M KOH solution: (a) FF, (b) FF-NaCl, (c) FF-NaCl-Ir and (d) FF-NaCl-Ir-P

Figure S9. CV curves in the potential range from 0.2 V to 0.3 V at various scan rates in 1 M KOH solution: (a) FF, (b) FF-NaCl, (c) FF-NaCl-Ir and (d) FF-NaCl-Ir-P

Figure S10. (a) LSVs of FF-NaCl-Ir-P before and after 12 hours chronopotentiometry measurement. (b) SEM image of FF-NaCl-Ir-P after 12 hours of HER.

Catalysts	Electrolyte	Overpotential / mV (10 mA cm ⁻²)	Ref.
FF-NaCl-Ir-P	1.0 M KOH	169	This work
NiCo-Ir-5	1.0 M KOH	240	1
CoIr-0.2	1.0 M KOH	235	2
Ir@Co nanosheets	1.0 M KOH	273	3
NiVIr LDH	1.0 M KOH	203	4
Ru/NiFe LDH-F/NF	1.0 M KOH	230	5
Ru ₁ Co ₂ NP	1.0 M KOH	240	6
Ir-NiCo-LDH	1.0 M KOH	192	7
Fe _{1.0} CO _{1.1} Ni _{1.4} -NC	1.0 M KOH	270	8
Fe _{MOFs} -SO ₃	1.0 M KOH	218	9
Ru-NiFeP/NF	1.0 M KOH	179	10

 Table S1. Comparative electrochemical OER performances of different

electrocatalytic materials in alkaline medium

 Table S2. Comparative electrochemical HER performances of different

Catalysts	Electrolyte	Overpotential / mV (10 mA cm ⁻²)	Ref.
FF-NaCl-Ir-P	1.0 M KOH	69	This work
Pt-αFe ₂ O ₃ /NF	1.0 M KOH	90	11
NiVIr LDH	1.0 M KOH	41	4
Ru/NiFe LDH-F/NF	1.0 M KOH	116	5
Ru ₁ Co ₂ NP	1.0 M KOH	188	6
Ru ₂ P	1.0 M KOH	57	12
Ru-WSe ₂	1.0 M KOH	87	13
Fe _{1.0} CO _{1.1} Ni _{1.4} -NC	1.0 M KOH	175	8
Ru-NiFeP/NF	1.0 M KOH	56	10
NiFe-MOF-74	1.0 M KOH	195	14

electrocatalytic materials in alkaline medium

Table	S3 .	Comparative	electrochemical	overall	water	splitting

Catalysts	Electrolyte	Overall Voltage (V) @ 10 mA cm ⁻²	Ref.
FF-NaCl-Ir-P	1.0 M KOH	1.47	This work
NiVIr LDH	1.0 M KOH	1.49	4
FeCoRuP	1.0 M KOH	1.47	15
Pt-αFe ₂ O ₃ /NF	1.0 M KOH	1.51	11
Ru/NiFe LDH-F/NF	1.0 M KOH	1.53	5
Ru ₁ Co ₂ NP	1.0 M KOH	1.59	6
np-IrO ₂ IrAl	0.5 M H ₂ SO ₄	1.52	16
Fe _{1.0} CO _{1.1} Ni _{1.4} -NC	1.0 M KOH	1.52	8
IrCo _{0.14} NRs	0.1 M HClO ₄	1.53	17
Ru-NiFeP/NF	1.0 M KOH	1.47	10
NiFe-MOF-74	1.0 M KOH	1.58	14

performances of different electrocatalytic materials

- 1. T. Huang, S. K. Moon and J.-M. Lee, *Electrochimica Acta*, 2019, **296**, 590-597.
- Y. Zhang, C. Wu, H. Jiang, Y. Lin, H. Liu, Q. He, S. Chen, T. Duan and L. Song, *Advanced Materials*, 2018, 30, 1707522.
- 3. D. D. Babu, Y. Huang, G. Anandhababu, X. Wang, R. Si, M. Wu, Q. Li, Y. Wang and J. Yao, *Journal of Materials Chemistry A*, 2019, **7**, 8376-8383.
- 4. S. Li, C. Xi, Y.-Z. Jin, D. Wu, J.-Q. Wang, T. Liu, H.-B. Wang, C.-K. Dong, H. Liu, S. A. Kulinich and X.-W. Du, *ACS Energy Letters*, 2019, **4**, 1823-1829.
- Y. Wu, S. Ji, H. Wang, B. G. Pollet, X. Wang and R. Wang, *Applied Surface Science*, 2020, **528**, 146972.
- Y. Bao, J. Dai, J. Zhao, Y. Wu, C. Li, L. Ji, X. Zhang and F. Yang, ACS Applied Energy Materials, 2020, 3, 1869-1874.
- R. Fan, Q. Mu, Z. Wei, Y. Peng and M. Shen, *Journal of Materials Chemistry A*, 2020, 8, 9871-9881.
- M. Khalid, A. M. B. Honorato, G. Tremiliosi Filho and H. Varela, *Journal of Materials Chemistry A*, 2020, 8, 9021-9031.
- 9. K. Feng, D. Zhang, F. Liu, H. Li, J. Xu, Y. Xia, Y. Li, H. Lin, S. Wang, M. Shao, Z. Kang and J. Zhong, *Advanced Energy Materials*, 2020, **10**, 2000184.
- Y. Lin, M. Zhang, L. Zhao, L. Wang, D. Cao and Y. Gong, *Applied Surface Science*, 2021, 536, 147952.
- B. Ye, L. Huang, Y. Hou, R. Jiang, L. Sun, Z. Yu, B. Zhang, Y. Huang and Y. Zhang, *Journal of Materials Chemistry A*, 2019, 7, 11379-11386.
- 12. Z. Wu, D. Nie, M. Song, T. Jiao, G. Fu and X. Liu, *Nanoscale*, 2019, 11, 7506-7512.
- 13. Y. Zhao, G. Mao, C. Huang, P. Cai, G. Cheng and W. Luo, *Inorganic Chemistry Frontiers*, 2019,

6, 1382-1387.

- 14. C. Chen, N. Suo, X. Han, X. He, Z. Dou, Z. Lin and L. Cui, *Journal of Alloys and Compounds*, 2021, **865**, 158795.
- H. Liu, X. Li, L. Ge, C. Peng, L. Zhu, W. Zou, J. Chen, Q. Wu, Y. Zhang, H. Huang, J. Wang, Z. Cheng, Z. Fu and Y. Lu, *Catalysis Science & Technology*, 2020, 10, 8314-8324.
- 16. Q. Li, J. Li, J. Xu, N. Zhang, Y. Li, L. Liu, D. Pan, Z. Wang and F. L. Deepak, *ACS Applied Energy Materials*, 2020, **3**, 3736-3744.
- W. Gao, Q. Xu, Z. Wang, M. Wang, X. Ren, G. Yuan and Q. Wang, *Electrochimica Acta*, 2020, 337, 135738.