Supporting Information for

Alkali Chloride Doped SnO₂ Electron-Transporting Layer for Boosting Charge Transfer and Passivating Defects in All-Inorganic CsPbBr₃ Perovskite Solar Cells

Guixiang Xie,¹ Xiaochun Lu,¹ Jialong Duan,^{2,*} Yan Dong,¹ Xiurong Jiang,¹ Fengzhang Tu,¹ Yanyan Duan,³ Qunwei Tang^{1,2,*}

¹ College of Chemistry and Material Science, Longyan University, Longyan 364012, PR China;

² College of Information Science and Technology, Jinan University, Guangzhou 510632, PR China;

³ State Centre for International Cooperation on Designer Low-Carbon and Environmental Material

(SCICDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou

450001, PR China;

*Corresponding authors. E-mail addresses: duanjialong@jnu.edu.cn; tangqunwei@jnu.edu.cn.

Figure S1. XRD patterns of SnO_2 and SnO_2 -MCl (M = Li, Na, K, Rb and Cs) ETLs.

Figure S2. Grain size distributions of perovskite films based on SnO₂ and SnO₂-MCl (M = Li, Na, K, Rb and Cs) ETLs.

Figure S3. Grain size distributions of perovskite films on the surface of SnO₂-RbCl ETLs annealed

at 250 °C (left) and 300 °C (right).

Figure S4. XRD patterns of CsPbBr₃ perovskite films based on SnO₂ and SnO₂-MCl (M = Li, Na, K, Rb and Cs) ETLs.

Figure S5. The full width at half-maximum evolution of (100) plane of CsPbBr₃ films obtained from Figure S4.

Figure S6. *J-V* curves of the inorganic PSCs with (a) SnO₂-LiCl, (b) SnO₂-NaCl, (c) SnO₂-KCl, (d) SnO₂-RbCl and (e) SnO₂-CsCl ETLs.

Figure S7. *R*_s values of PSCs at different RbCl concentrations.

Figure S8. Steady-state power output at a maximum power point (bias voltage of 1.4 V) of SnO₂-RbCl ETL tailored CsPbBr₃ PSC.

Figure S9. XPS spectra of (a) Rb 3d and (b) Cl 2p in SnO_2 and SnO_2 -RbCl ETLs. (c) The whole

XPS spectra of SnO₂ and SnO₂-RbCl films.

Figure S10. XPS spectra of perovskite film fabricated on SnO₂-RbCl ETL: (a) Rb 3d, (b) Cl 2p and (c) the whole spectrum.

Figure S11. UPS spectra and UV-vis spectra of SnO_2 and SnO_2 -MCl (M = Li, Na, K, Rb and Cs) ETLs.

Devices		$J_{\rm sc}$	PCE	FF	Ref.	
		(mA cm ⁻²)	(%)	(%)		
FTO/SnO ₂ -MCl/CsPbBr ₃ /Carbon	1.601	7.69	10.04	81.6	This work	
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr ₃ /PTAA/Au	1.25	6.70	6.20	73.0	S ^[1]	
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr ₃ /C	1.29	5.70	5.00	68.0	S ^[2]	
FTO/ZnO/CsPbBr3-CsPb2Br5/Spiro-OMeTAD/Au	1.43	6.17	6.81	77.2	S ^[3]	
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr ₃ /Spiro-OMeTAD/Au	1.34	6.52	6.05	69.0	S ^[4]	
ITO/ZnO/CsPbBr ₃ /Spiro-OMeTAD/Au	1.38	6.15	5.98	70.51	S ^[5]	
FTO/TiO ₂ /CQD-CsPbBr ₃ IO/Spiro-OMeTAD/Au	1.06	11.34	8.29	69.0	S ^[6]	
FTO/SnO ₂ /CsPbBr ₃ /CsSnBr ₃ /Carbon		7.80	10.60	84.4	S ^[7]	
FTO/Sb-TiO ₂ /CsPbBr ₃ /C	1.654	6.70	8.91	80.4	S ^[8]	
FTO/L-TiO ₂ :MoSe ₂ /CsPbBr ₃ /C	1.615	7.88	10.02	78.7	S ^[9]	
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr ₃ /C	1.24	7.4	6.7	73.0	$S^{[10]}$	
FTO/c-TiO ₂ /CsPbBr ₃ /C	1.34	6.46	5.86	68.04	$S^{[11]}$	
FTO/m-TiO ₂ /CsPbBr ₃ /PTAA/Au	1.27	6.16	5.72	73	S ^[12]	
FTO/c-TiO ₂ /m-TiO ₂ /GQDs/CsPbBr ₃ /C	1.458	8.12	9.72	82.1	S ^[13]	
FTO/c-TiO ₂ /m-TiO ₂ /Sm ³⁺ -CsPbBr ₃ /C	1.594	7.48	10.14	85.1	S ^[14]	
FTO/SnO ₂ /CsPbBr ₃ /N-CQDs/C	1.622	7.87	10.71	80.1	S ^[15]	
FTO/c-TiO ₂ /m-TiO ₂ /Sm ³⁺ -CsPbBr ₃ /Cu(Cr,Ba)O ₂ /C	1.615	7.81	10.79	85.5	$S^{[16]}$	
FTO/c-TiO ₂ /m-TiO ₂ /Sr ²⁺ -CsPbBr ₃ /C	1.54	7.71	9.63	81.1	S ^[17]	
FTO/c-TiO ₂ /m-TiO ₂ /GQDs/CsPbBr ₃ /MnS/C	1.52	8.28	10.45	83	$S^{[18]}$	
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr ₃ /Spiro-OMeTAD/Ag	1.37	6.41	6.32	72	S ^[19]	
FTO/TiO ₂ /CsPbBr ₃ /C	1.19	7.48	6.12	68.8	S ^[20]	
FTO/c-TiO ₂ /CsPbBr ₃ /C	1.49	6.89	8.11	79	S ^[21]	
FTO/c-TiO ₂ /PTI-CsPbBr ₃ /spiro-OMeTAD/Ag	1.498	9.78	10.91	74.47	S ^[22]	
FTO/c-TiO ₂ /m-TiO ₂ /GQDs/CsPbBr ₃ /P3HT/C	1.36	7.02	6.49	68	S ^[23]	
FTO/c-TiO ₂ /SnO ₂ /CsPbBr ₃ /CuPc/C	1.31	8.24	8.79	81.4	S ^[24]	
FTO/c-TiO ₂ /CsPbBr ₃ /C	1.545	7.37	9.35	82.2	S ^[25]	
FTO/c-TiO ₂ /CsPbBr ₃ /Ti ₃ C ₂ -MXene/C	1.444	8.54	9.01	73.08	S ^[26]	
FTO/c-TiO ₂ /m-TiO ₂ /Sn ²⁺ -CsPbBr ₃ /C	1.37	7.66	8.63	82.22	S ^[27]	
FTO/c-TiO ₂ /m-TiO ₂ /CsPbBr ₃ /C	1.22	7.40	7.37	84.1	S ^[28]	
FTO/TiO ₂ /CsPb _{0.998} Co _{0.002} Br ₃ /Spiro-OMeTAD/Au	1.357	7.45	8.57	84.84	S ^[29]	
FTO/c-TiO ₂ /CsPbBr ₃ /CsPbBr ₃ -CsPb ₂ Br ₅ /CsPbBr ₃ -Cs ₄ PbB r ₆ /C	1.461	9.26	10.17	75.39	S ^[30]	

Table S1.	Comparison	of photovoltaic	parameters	for state-o	of-the-art CsI	PbBr ₃ PS	Cs.

FTO/c-TiO ₂ /CsPbBr ₃ /spiro-OMeTAD/Au	1.27	6.97	6.95	78.5	S ^[31]
FTO/c-TiO ₂ /m-TiO ₂ /m-ZrO ₂ /CsPbBr ₃ /m-carbon	1.44	7.75	8.2	73.52	S ^[32]
FTO/c-TiO ₂ /CsPbBr ₃ -CsPb ₂ Br ₅ /spiro-OMeTAD/Ag	1.296	8.48	8.34	75.9	S ^[33]
FTO/c-TiO ₂ /CsPbBr ₃ /spiro-OMeTAD/Au	1.5	5.6	5.4	62	S ^[34]

Reference

- M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, J. Phys. Chem. Lett. 2016, 7, 167–172.
- [2] X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu, H. Chen, ACS Appl. Mater. Interfaces 2016, 8, 33649–33655.
- [3] X. Zhang, Z. Jin, J. Zhang, D. Bai, H. Bian, K. Wang, J. Sun, Q. Wang, S. F. Liu, ACS Appl. Mater. Interfaces 2018, 10, 7145–7154.
- [4] K. C. Tang, P. You, F. Yan, Sol. RRL 2018, 2, 1800075.
- [5] W. Chen, J. Zhang, G. Xu, R. Xue, Y. Li, Y. Zhou, J. Hou, Y. Li, Adv. Mater. 2018, 30, 1800855.
- [6] S. Zhou, R. Tang, L. Yin, Adv. Mater. 2017, 29, 1703682.
- [7] Y. Zhao, J. Duan, H. Yuan, Y. Wang, X. Yang, B. He, Q. Tang, Sol. RRL 2019, 1800284.
- [8] Y. Xu, J. Duan, X. Yang, J. Du, Y. Wang, Y. Duan, Q. Tang, J. Mater. Chem. A 2020, 8, 11859–11866.
- [9] Q. Zhou, J. Du, J. Duan, Y. Wang, X. Yang, Y. Duan, Q. Tang, J. Mater. Chem. A 2020, 8, 7784–7791.
- [10] J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, J. Am. Chem. Soc. 2016, 138, 15829–15832.
- [11] P. Teng, X. Han, J. Li, Y. Xu, L. Kang, Y. Wang, Y. Yang, T. Yu, ACS Appl. Mater. Interfaces 2018, 10, 9541–9546.
- [12] M. Kulbak, D. Cahen, G. Hodes, J. Phys. Chem. Lett. 2015, 6, 2452-2456.
- [13] J. Duan, Y. Zhao, B. He, Q. Tang, Angew. Chem. Int. Ed. 2018, 57, 3787–3791.
- [14] J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He, Q. Tang, Adv. Energy Mater. 2018, 8, 1802346.
- [15] Y. Zhao, J. Duan, Y. Wang, X. Yang, Q. Tang, Nano Energy 2020, 67, 104286.
- [16] J. Duan, Y. Zhao, Y. Wang, X. Yang, Q. Tang, Angew. Chem. Int. Ed. 2019, 58, 16147–16151.
- [17] Y. Zhao, Y. Wang, J. Duan, X. Yang, Q. Tang, J. Mater. Chem. A 2019, 7, 6877–6882.
- [18] X. Li, Y. Tan, H. Lai, S. Li, Y. Chen, S. Li, P. Xu, J. Yang, ACS Appl. Mater. Interfaces 2019, 11, 29746–29752.
- [19] H. Wang, Y. Wu, M. Ma, S. Dong, Q. Li, J. Du, H. Zhang, Q. Xu, ACS Appl. Energy Mater. 2019, 2, 2305–2312.
- [20] X. Cao, G. Zhang, L. Jiang, Y. Cai, Y. Gao, W. Yang, X. He, Q. Zeng, G. Xing, Y. Jia, J. Wei, ACS Appl. Mater. Interfaces 2019, 12, 5925–5931.
- [21] X. Wan, Z. Yu, W. Tian, F. Huang, S. Jin, X. Yang, Y.-B. Cheng, A. Hagfeldt, L. Sun, J. Energy Chem. 2020,

46, 8-15.

- [22] G. Tong, T. Chen, H. Li, L. Qiu, Z. Liu, Y. Dang, W. Song, L. K. Ono, Y. Jiang, Y. Qi, *Nano Energy* 2019, 65, 104015.
- [23] G. Wang, W. Dong, A. Gurung, K. Chen, F. Wu, Q. He, R. Pathak, Q. Qiao, J. Power Sources 2019, 432, 48–54.
- [24] X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, G. Liao, Nano Energy 2019, 56, 184–195.
- [25] T. Xiang, Y. Zhang, H. Wu, J. Li, L. Yang, K. Wang, J. Xia, Z. Deng, J. Xiao, W. Li, Z. Ku, F. Huang, J. Zhong, Y. Peng, Y.-B. Cheng, Sol. Energy Mater. Sol. Cells 2019, 110317.
- [26] T. Chen, G. Tong, E. Xu, H. Li, P. Li, Z. Zhu, J. Tang, Y. Qi, Y. Jiang, J. Mater. Chem. A 2019, 7, 20597–20603.
- [27] H. Guo, Y. Pei, J. Zhang, C. Cai, K. Zhou, Y. Zhu, J. Mater. Chem. C 2019, 7, 11234–11243.
- [28] D. Huang, P. Xie, Z. Pan, H. Rao, X. Zhong, J. Mater. Chem. A 2019, 7, 22420–22428.
- [29] D. Wang, W. Li, Z. Du, G. Li, W. Sun, J. Wu, Z. Lan, J. Mater. Chem. C 2020, 8, 1649–1655.
- [30] G. Tong, T. Chen, H. Li, W. Song, Y. Chang, J. Liu, L. Yu, J. Xu, Y. Qi, Y. Jiang, Sol. RRL 2019, 3, 1900030.
- [31] J. Lei, F. Gao, H. Wang, J. Li, J. Jiang, X. Wu, R. Gao, Z. Yang, S. (Frank) Liu, Sol. Energy Mater. Sol. Cells 2018, 187, 1–8.
- [32] I. Poli, J. Baker, J. McGettrick, F. De Rossi, S. Eslava, T. Watson, P. J. Cameron, J. Mater. Chem. A 2018, 6, 18677–18686.
- [33] H. Li, G. Tong, T. Chen, H. Zhu, G. Li, Y. Chang, L. Wang, Y. Jiang, J. Mater. Chem. A 2018, 6, 14255–14261.
- [34] Q. A. Akkerman, M. Gandini, F. Di Stasio, P. Rastogi, F. Palazon, G. Bertoni, J. M. Ball, M. Prato, A. Petrozza, L. Manna, *Nat. Energy* 2017, 2, 16194.