## **Electronic Supporting Information (ESI)**

# Unlocking veiled oxygen redox in Na-based earth-abundant binary layered oxide

Myungkyu Kim<sup>a‡</sup>, Hyungjun Kim<sup>a‡</sup>, Maenghyo Cho<sup>a\*</sup> and Duho Kim<sup>b\*</sup>

<sup>a.</sup> Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. E-mail: mhcho@snu.ac.kr

<sup>b</sup>. Mechanical Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea E-mail: duhokim@khu.ac.kr

<sup>+</sup> These authors contributed equally

#### ARTICLE

(a)



Figure S1. (a) Relative total energies of 30 Mn/Fe mixed structures having the lowest electrostatic energy among all possible Na/vacancy (x = 0.25) and Mn/Fe (y = 0.5) mixed cases in Na<sub>1-x</sub>[Mn<sub>1-y</sub>Fe<sub>y</sub>]O<sub>2</sub> (containing 8 f.u.). The lowest total energy (gray filled circle) indicates the atomic configuration at the ground state among the mixed structures and (b) the corresponding [Mn<sub>0.5</sub>Fe<sub>0.5</sub>]O<sub>2</sub> slab in Na<sub>0.75</sub>[Mn<sub>0.5</sub>Fe<sub>0.5</sub>]O<sub>2</sub>.



Figure S2. Convex hull diagram for (a)  $Na_{1,x}MnO_2$  and (b)  $Na_{1,x}[Mn_{1/2}Fe_{1/2}]O_2$  oxides. Filled circles on the tie line indicates the lowest  $\Delta H_{mix}$  at thermodynamically stable phases determined by convex hull analysis, and the rest energies were expressed as  $Na/\Box$  mixing enthalpy (red-colored cross).



Figure S3. The relaxed ground state structures (left) and the arrangement of Na (right) at x = 0.375, 0.5 and 0.75 in Na<sub>1-x</sub>MnO<sub>2</sub>. Each Na<sub>e</sub> and Na<sub>f</sub> prismatic site is displayed in yellow and blue.



Figure S4. The relaxed ground state structures (left) and the arrangement of Na (right) correspond to x = 0.5, 0.625 and 0.75 in Na<sub>1-x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub>. Each Na<sub>e</sub> and Na<sub>f</sub> prismatic site is displayed in yellow and blue.

#### ARTICLE



**Figure S5.** (a) The atomic structures of P2-Na<sub>1x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> and O2-Na<sub>1x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> (x = 0.5). The letters P and O stand for prismatic and octahedral sites, in which sodium ions can accommodate. The atomic models of O2-Na<sub>1x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> (x = 0.5, 0.625, 0.75, 0.875 and 1.0) were obtained, considering that P2-O2 stacking transition results from slabs (slabs in dashed box) glided by (1/3, 2/3, 0) direction in P2-structures.<sup>1</sup> (b) Phase stability of P2-Na<sub>1x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> against O2-Na<sub>1x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> as a function of the inverse Na contents(x) in Na<sub>1x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub>. It has been observed that P2-O2 stacking transition were generally occurred at high voltage in various types of sodium layered oxide cathodes,<sup>2</sup> therefore we calculated formation energies of mixing enthalpy ( $\Delta H_{mix}$ ] for P2- and O2-Na<sub>1x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub>, restricting to the high voltage range (0.5 ≤  $x \le 1.0$ ). On the basis of obtained phase stability diagram, P2-Na<sub>1x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> are more stable than O2-Na<sub>1x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> within the range (0.5 ≤  $x \le 0.875$ ). In order to explore the possibility whether the stacking transition affect the redox mechanism, PDOSs of Mn and Fe 3d-electron and O 2p-electron at x = 1.0 in P2-Na<sub>1x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> (solid line) and O2-Na<sub>1x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> dashed line) were comparatively scrutinized (Figure S5c). PDOSs are plotted with varying energy referenced to the fermi level (*E<sub>f</sub>*] for each compound. The electronic structures for P2-Na<sub>0.0</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> and O2-Na<sub>0.0</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> are almost identical, indicating that the P2-O2 stacking transition would not affect the redox mechanism of NMFO at high voltage. The calculated average net charges of Fe (gray bar graphs) and O (red bar graphs) in P2-Na<sub>1.x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> and O2-Na<sub>1.x</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> at x = 1.0 are almost same, which is well consist with the previous electron structure results (Figure S5d).



**Figure S6.** (a) Relative total energies of 30 Mn/Fe mixed structures having the lowest electrostatic energy among all possible Na/vacancy (x = 0.25) and Mn/Fe (y = 0.625) mixed cases in Na<sub>1-x</sub>[Mn<sub>1-y</sub>Fe<sub>y</sub>]O<sub>2</sub> (containing 8 f.u.). The lowest total energy (blue filled circle) indicates the atomic configuration at the ground state among the mixed structures and (b) the corresponding [Mn<sub>0.625</sub>Fe<sub>0.375</sub>]O<sub>2</sub> slab in Na<sub>0.75</sub>[Mn<sub>0.625</sub>Fe<sub>0.375</sub>]O<sub>2</sub>. The honeycomb-like arrangement of Mn and Fe resemble the Mn/Fe orderings determined from the previous theoretical literature.<sup>3</sup>

|                                                                                               | a lattice parameter (Å) | b lattice parameter (Å) | c lattice parameter (Å) |
|-----------------------------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|
| $\label{eq:calculated values} Calculated values (x = 0.375 in Na_{1-x}[Mn_{1/2}Fe_{1/2}]O_2)$ | 3.004                   | 2.98                    | 11.383                  |
| Experimentally measured values $(x = 0.33 \text{ in } Na_{1-x}[Mn_{1/2}Fe_{1/2}]O_2)$         | 2.934                   | -                       | 11.224                  |

Table S1. Calculated lattice parameters of Na<sub>0.625</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> (x = 0.375 in Na<sub>1×</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub>) and experimentally measured lattice parameters of P2-Na<sub>2/3</sub>[Mn<sub>1/2</sub>Fe<sub>1/2</sub>]O<sub>2</sub> <sup>4</sup> in a unit cell size.

### References

- 1 F. Tournadre, L. Croguennec, I. Saadoune, D. Carlier, Y. Shao-Horn, P. Willmann and C. Delmas, *J. Solid State Chem.*, 2004, **177**, 2790–2802.
- 2 P. F. Wang, Y. You, Y. X. Yin and Y. G. Guo, *Adv. Energy Mater.*, 2018, **8**, 1701912.
- 3 N. A. Katcho, J. Carrasco, D. Saurel, E. Gonzalo, M. Han, F. Aguesse and T. Rojo, Adv. Energy Mater., 2017, 7, 1601477.
- 4 N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada and S. Komaba, *Nat. Mater.*, 2012, **11**, 512–517.