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Figure S1. (a) Relative total energies of 30 Mn/Fe mixed structures having the lowest electrostatic energy among all possible Na/vacancy (x = 0.25) and Mn/Fe (y = 0.5) mixed cases 
in Na1-x[Mn1-yFey]O2 (containing 8 f.u.). The lowest total energy (gray filled circle) indicates the atomic configuration at the ground state among the mixed structures and  (b) the 
corresponding [Mn0.5Fe0.5]O2 slab in Na0.75[Mn0.5Fe0.5]O2.
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Figure S2. Convex hull diagram for (a) Na1-xMnO2 and (b) Na1-x[Mn1/2Fe1/2]O2 oxides. Filled circles on the tie line indicates the lowest ΔHmix at thermodynamically stable phases 
determined by convex hull analysis, and the rest energies were expressed as Na/□ mixing enthalpy (red-colored cross).
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Figure S3. The relaxed ground state structures (left) and the arrangement of Na (right) at x = 0.375, 0.5 and 0.75 in Na1-xMnO2. Each Nae and Naf prismatic site is displayed in yellow 
and blue.
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Figure S4. The relaxed ground state structures (left) and the arrangement of Na (right) correspond to x = 0.5, 0.625 and 0.75 in Na1-x[Mn1/2Fe1/2]O2. Each Nae and Naf prismatic site 
is displayed in yellow and blue.
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Figure S5. (a) The atomic structures of P2-Na1-x[Mn1/2Fe1/2]O2 and O2-Na1-x[Mn1/2Fe1/2]O2 (x = 0.5). The letters P and O stand for prismatic and octahedral sites, in which sodium ions 
can accommodate. The atomic models of O2-Na1-x[Mn1/2Fe1/2]O2 (x = 0.5, 0.625, 0.75, 0.875 and 1.0) were obtained, considering that P2-O2 stacking transition results from slabs 
(slabs in dashed box) glided by (1/3, 2/3, 0) direction in P2-structures.1 (b) Phase stability of P2-Na1-x[Mn1/2Fe1/2]O2 against O2-Na1-x[Mn1/2Fe1/2]O2 as a function of the inverse Na 
contents(x) in Na1-x[Mn1/2Fe1/2]O2. It has been observed that P2-O2 stacking transition were generally occurred at high voltage in various types of sodium layered oxide cathodes,2 
therefore we calculated formation energies of mixing enthalpy (ΔHmix) for P2- and O2-Na1-x[Mn1/2Fe1/2]O2, restricting to the high voltage range (0.5 ≤ x ≤ 1.0). On the basis of obtained 
phase stability diagram, P2-Na1-x[Mn1/2Fe1/2]O2 are more stable than O2-Na1-x[Mn1/2Fe1/2]O2 within the range (0.5 ≤ x ≤ 0.875). In order to explore the possibility whether the stacking 
transition affect the redox mechanism, PDOSs of Mn and Fe 3d-electron and O 2p-electron at x = 1.0 in P2-Na1-x[Mn1/2Fe1/2]O2 (solid line) and O2-Na1-x[Mn1/2Fe1/2]O2 (dashed line) 
were comparatively scrutinized (Figure S5c). PDOSs are plotted with varying energy referenced to the fermi level (Ef) for each compound. The electronic structures for P2-
Na0.0[Mn1/2Fe1/2]O2 and O2-Na0.0[Mn1/2Fe1/2]O2 are almost identical, indicating that the P2-O2 stacking transition would not affect the redox mechanism of NMFO at high voltage. The 
calculated average net charges of Fe (gray bar graphs) and O (red bar graphs) in P2-Na1-x[Mn1/2Fe1/2]O2 and O2-Na1-x[Mn1/2Fe1/2]O2 at x = 1.0 are almost same, which is well consist 
with the previous electron structure results (Figure S5d).
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Figure S6. (a) Relative total energies of 30 Mn/Fe mixed structures having the lowest electrostatic energy among all possible Na/vacancy (x = 0.25) and Mn/Fe (y = 0.625) mixed cases 
in Na1-x[Mn1-yFey]O2 (containing 8 f.u.). The lowest total energy (blue filled circle) indicates the atomic configuration at the ground state among the mixed structures and (b) the 
corresponding [Mn0.625Fe0.375]O2 slab in Na0.75[Mn0.625Fe0.375]O2. The honeycomb-like arrangement of Mn and Fe resemble the Mn/Fe orderings determined from the previous 
theoretical literature.3
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Table S1. Calculated lattice parameters of Na0.625[Mn1/2Fe1/2]O2 (  in Na1-x[Mn1/2Fe1/2]O2) and experimentally measured  lattice parameters of P2-Na2/3[Mn1/2Fe1/2]O2 4 𝑥= 0.375
in a unit cell size.
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