SUPPORTING INFORMATION

Three-in-One: Achieving Robust and Effective Hydrogen-Evolving

Hybrid Materials by Integrating Polyoxometalate, Photo-responsive

Metal-Organic Framework, and in-situ Generated Pt nanoparticles

Le Jiao, Yuanyuan Dong, Xing Xin, Ruijie Wang, Hongjin Lv*

MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China.

Corresponding email: <u>hlv@bit.edu.cn</u>

Table of content

1. Figure S1-S16

Figure S1. SEM image of NU-1000. S3
Figure S2. PXRD patterns of P ₂ W ₁₈ , 0.34-P ₂ W ₁₈ @NU-1000 and NU-1000S3
Figure S3. EDS elemental analysis of NU-1000S4
Figure S4. Photocatalytic hydrogen evolution at different pH valuesS4
Figure S5. TEM image of NU-1000-Pt
Figure S6. XPS of Pt in NU-1000-Pt. ·····S5
Figure S7. EDS elemental analysis of 0.34-P ₂ W ₁₈ @NU-1000-Pt. ······S6
Figure S8. The corresponding elemental mapping images of 0.34 - P_2W_{18} @NU-1000-
PtS6
Figure S9. The comparison of low temperature N_2 adsorption-desorption isotherms of
0.34 - P_2W_{18} @NU-1000 before and after photocatalysisS7
Figure S10. The comparison of the pore distribution curves of 0.34 - P_2W_{18} @NU-
1000 before and after photocatalysis
Figure S11. Photocatalytic hydrogen evolution of 0.34 - P_2W_{18} @NU-1000 with
different types of Pt sources

Figure S12. SEM image of 0.34 - P_2W_{18} @NU-1000 after photocatalytic hydrogen
evolution. ·····S8
Figure S13. PXRD patterns of 0.34 - P_2W_{18} @NU-1000 before and after photocatalytic
reaction. ·····S9
Figure S14. FT-IR spectra of 0.34 - P_2W_{18} @NU-1000 before and after photocatalysisS9
Figure S15. Photocatalytic hydrogen under different light sourcesS10
Figure S16. Photocatalytic hydrogen evolution of 0.34 - P_2W_{18} @NU-1000 under
Natural SunlightS10
Figure S17. Cyclic voltammogram of P_2W_{18} (10 ⁻⁴ M) in 0.1 M H ₂ SO ₄ aqueous
solutionS11

2. Table S1-S2

4. References ······S12
3. Apparent quantum yield calculation
upon excitation at 365 nmS11
Table S2. PL decay (at 505 nm) lifetimes of NU-1000, 0.34-P ₂ W ₁₈ @NU-1000 samples
Table S1. Comparison of different photocatalytic systems for hydrogen production. S11

1. Figure S1-S17

Figure S1. SEM image of NU-1000.

Figure S2. PXRD patterns of P_2W_{18} , 0.34- P_2W_{18} @NU-1000 and NU-1000.

Figure S3. EDS elemental analysis of 0.34-P₂W₁₈@NU-1000.

Figure S4. Photocatalytic hydrogen evolution at different pH values. Conditions: 10 mg of 0.34- P_2W_{18} @NU-1000, 1 wt% Pt, 20 mL of 1 M AA aqueous, 300 W Xe-lamp.

Figure S5. High resolution TEM image of NU-1000-Pt.

Figure S6. High resolution XPS spectra of Pt 4f in NU-1000-Pt.

Figure S7. EDS elemental analysis of 0.34-P₂W₁₈@NU-1000-Pt.

Figure S8. The corresponding elemental mapping images of 0.34-P₂W₁₈@NU-1000-Pt.

Figure S9. The comparison of low temperature N_2 adsorption-desorption isotherms of 0.34-P₂W₁₈@NU-1000 before and after photocatalysis.

Figure S10. The comparison of the pore distribution curves of 0.34- P_2W_{18} @NU-1000 before and after photocatalysis

Figure S11. Photocatalytic hydrogen evolution of 0.34- P_2W_{18} @NU-1000 with different types of Pt sources which contain equal amount of Pt species.

Figure S12. SEM image of 0.34- P_2W_{18} @NU-1000 after photocatalytic hydrogen evolution for 12 h.

Figure S13. PXRD patterns of 0.34- P_2W_{18} @NU-1000 before and after photocatalytic reaction for 12 h.

Figure S14. FT-IR spectra of 0.34-P₂W₁₈@NU-1000 before and after photocatalysis for 12 h.

Figure S15. Photocatalytic hydrogen under different light sources. Reaction conditions: 10 mg of 0.34-**P₂W₁₈**@NU-1000, 0.25 wt% Pt, pH=5.5, 20 mL of 1 M AA aqueous, 300 W Xe-lamp.

Figure S16. (a) Photocatalytic hydrogen evolution of 0.34- P_2W_{18} @NU-1000 under Natural Sunlight. Weather conditions (obtained from the website of China National Meteorological Observatory *http://www.weather.com.cn*): Beijing, China; N 39°43'29'', E 116°9'51''; ASL 130 m; July 15th, 2019; 34 °C/24 °C, Cloudy; Visibility: 4 km; UV intensity level (at noon): 7. Experiment conditions: 10 mg 0.34- P_2W_{18} @NU-1000 catalyst, 0.25 wt% Pt, 20 ml of 1 M AA aqueous at pH 5.5. (b) Photos of equipment for photocatalytic hydrogen evolution under Natural Sunlight.

2- (q 0-		Peak	E (V)	Peak	E (V)	Formal Potential (V)
rent (p	I	I	0.195	I'	0.250	0.223
un 2 4		п	0.022	П,	0.080	0.102
-6 -		Ш	-0.230	Ш'	-0.180	-0.205
+ -0.	.6 -0.4 -0.2 0.0 0.2 0.4 0.6 E (V) vs NHE	IV	-0.460	IV'	-0.420	-0.440

Figure S17. Left: Cyclic voltammogram of P_2W_{18} (10⁻⁴ M) in 0.1 M H₂SO₄ aqueous solution using glassy carbon working electrode, saturated calomel electrode (SCE) reference electrode, and Pt wire auxiliary electrode; Right: the corresponding peak potentials and calculated formal potentials for different redox couples. Scan rate: 50 mV/s. The measured potential was expressed by converting to normal hydrogen electrode (NHE).

2. Table S1-S2

Table S1. Comparison of different photocatalytic systems for hydrogen production using POM@MOF composites. TON is defined as n $(1/2 \text{ H}_2)/\text{ n}$ (catalyst).

Catalyst	Photosensitizer	Solvent	Time	TON	Ref.
P ₂ W ₁₈ @NU-1000-Pt		H ₂ O	120 h	5464	This work
PNPMOF		H_2O	6 h	64	1
Ni ₄ P ₂ W ₁₈ @MOF-1		H ₂ O/MeOH	72 h	1476	2
P ₂ W ₁₅ V ₃ @MIL-101	$[\operatorname{Ru}(\operatorname{bpy})_3]^{2+}$	DMF/H2O/CH3CN	8 h	56	3
WD-POM@SMOF-1	$[\operatorname{Ru}(\operatorname{bpy})_3]^{2+}$	H ₂ O/MeOH	12 h	392	4
P2W18@UiO		DMF/CH ₃ CN	14 h	307	5

Table S2. PL decay (at 505 nm) lifetimes of NU-1000, 0.34- P_2W_{18} @NU-1000 samples upon excitation at 365 nm, the PL decays were corrected by IRF.

Compounds	τ_1 (ns)	$\tau_2(ns)$	$\tau_3(ns)$
NU-1000	0.76	3.89	15.17
0.34-P ₂ W ₁₈ @NU-1000	0.53	3.01	13.23

3. Apparent quantum yield calculation

$$n_{\text{photons}} = \frac{Pt\lambda}{hcN_A} = 7.136 \times 10^{-3} \text{ mol}$$
(1)
$$\frac{2 \times n_{H2}}{\phi} = \frac{n_{photons}}{n_{photons}} = 1.69\%$$
(2)

Where P is the illumination power (P=EA_R, E=2.6 mW/cm²), A_R is the irradiation area (π R², R=2.1 cm), t is the illumination time (s, in our cases t =43200 s), equivalent wavelength λ =549 nm for full optical Xe-lamp, h is the Planck constant, c is the velocity of light and N_A is Avogadro's number.

4. References

- 1. W. Guo, H. Lv, Z. Chen, K. P. Sullivan, S. M. Lauinger, Y. Chi, J. M. Sumliner, T. Lian and C. L. Hill, *J. Mater. Chem. A*, 2016, **4**, 5952-5957.
- 2. X. J. Kong, Z. Lin, Z. M. Zhang, T. Zhang and W. Lin, Angew. Chem. Int. Ed., 2016, 55, 6411-6416.
- 3. H. Li, S. Yao, H.-L. Wu, J.-Y. Qu, Z.-M. Zhang, T.-B. Lu, W. Lin and E.-B. Wang, *Appl. Catal. B: Environ.*, 2018, **224**, 46-52.
- 4. J. Tian, Z. Y. Xu, D. W. Zhang, H. Wang, S. H. Xie, D. W. Xu, Y. H. Ren, H. Wang, Y. Liu and Z. T. Li, *Nat. Commun.*, 2016, 7, 11580.
- 5. Z. M. Zhang, T. Zhang, C. Wang, Z. Lin, L. S. Long and W. Lin, J. Am. Chem. Soc., 2015, 137, 3197-3200.