Supplementary Material:

Strategic synthesis of sponge-like structured SiO_x@C@CoO

multifunctional composites for high-performance and stable lithium-

ion batteries

Pu Wang^a, Zhongti Sun^b, Hui Liu^c, Zhi-Wen Gao^c, Jianguo Hu^a, Wan-Jian Yin^d, Qingqing Ke^{a,*}, Hugh Lu Zhu^{a,*}

^a School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai 519082, China

* Corresponding authors

Email: zhulu5@mail.sysu.edu.cn; keqingq@mail.sysu.edu.cn

^b School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013,

P. R. China

^c Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, SAR China

^d College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), and Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China

Figure. S1: SEM images of SiO particles (a) before ball milled (inside: Photograph SiO power before ball milled); (b) after ball milled (inside: Photograph SiO power after ball milled); SEM images of $SiO_x@C$ particles at (c) low (inside: Photograph $SiO_x@C$ power after calcination process) and (d) high magnifications.

As can be seen from Figure S1a, commercial SiO is an obvious block structure. And there is a decrease in particle sizes of SiO after the ball milling process, although the morphology of the block remained (Figure S1b). After spray drying with sucrose, the morphology of small particles attached to the surface of SiO_x can be observed in Figure S1c. Sucrose molecules are decomposed into carbon adsorbed on the surface of SiO_x during the sintering process, and finally form SiO_x@C nanoparticles, which are shown in Figure S1d.

Figure. S2: SEM images of CoO nanosheets at (a) low and (b) (c) high magnifications, (d) SEM images and the corresponding EDX elemental mappings of C, Si, O and Co in CoO nanosheets.

Figure S3: (a) TGA curves of SiO_x@C@CoO; (b) TGA curves of SiO_x@C and bare SiO_x (red) (c) N_2 adsorption/desorption isotherms curve of the SiO_x@C (inside: pore size distribution profile); (d) N_2 adsorption/desorption isotherms curve of the Pure CoO (inside: pore size distribution profile).

Figure S4: Differential capacity plot of $SiO_x@C@CoO$ electrode.

Table S1: Comparison of rate capacity retention of SiO_x -based materials between this work and the previous reports.

Composite	Current (A g ⁻¹)	Voltage range (V)	Reversible capacity (mA h g ⁻¹)	Mass Loading (mg cm ⁻²)	Ref.
SiOC	3.2	0.01-3	290	_	S 1
SiO _x -TiO ₂ @C	6.4	0.01-2.5	375	1.3	S2
SiO _x /C	5	0.01-3	303	1.5	S 3
SiO _x /C	1	0.01-3	423	2.3	S4
SiO _x /graphene	5	0.01-1.5	190	-	S5
FeSi/Si/SiO _x	5	0.01-1.5	333	1.1	S 6
Si/SiO _x @CNF	5	0.01-3	272	_	S7
N-doped carbon/SiO _x	1.6	0.005-3	447	1.6-2.0	S 8
ternary SiO _x	5	0.01-3	406	0.53	S9
SiO _x @C@CoO	5	0.01-3	484	1.5	This work

Figure S5: (a) Comparison of the rate performance of $SiO_x@C$, CoO, and $SiO_x@C@CoO$; (b) Comparative cycle performance of SiO_x , $SiO_x@C$, CoO and $SiO_x@C@CoO$ at the current density of 1 A g⁻¹.

Figure S6: SEM images of SiO_x@C@CoO after 750 cycles at different scales (a) 10 μ m; (b) 2 μ m; (c) 1 μ m; (d) 300 nm; (e) SEM images and the corresponding EDX elemental mappings of Co, C, Si, and O in SiO_x@C@CoO (scale bar 1 μ m).

Figure S7: (a) EIS measurements of bare SiO, $SiO_x@C$, $SiO_x@CoO$; (b) the equivalent circuit of impedance spectra for fitting.

Figure S8: Kinetics analysis of the lithium storage behavior for the SiO_x@C electrode. (a) CV curves at different scan rates; (b) Log (i) versus log (v) plots at different cathodic/anodic peaks; (c) Capacitive and diffusion-controlled contribution to charge storage of sponge-like network at 0.8 mV s⁻¹; (d) Normalized contribution ratio of capacitance and diffusion at different scan rates.

Figure S9: GITT curves of (a) SiO_x and (b) $SiO_x@C$.

Figure S10: *In-situ* XRD patterns result for SiO_x@C@CoO at angles of (a) 22-35 degree and (b) 36.3-45.5 degree during discharging/charging processes for the initial two cycles.

Figure S11: Cycling stability of the NCM811 electrode at 1 C.

Electrode	Reversible capacity	Current density	Cycle	Ref
Material	(mA h g ⁻¹)	(mA g ⁻¹)	number	
N-SiO _x /C/GF-4	525.2	1000	500	[S10]
SiO _x /C@graphite	562	1000	300	[S11]
rGO@SiO _x @C	410	1000	200	[S12]
ZIF@SiO _x	900	1000	350	[S13]
SiOC	701	100	100	[S1]
SiO _x -TiO ₂ @C	700	1000	600	[S2]
SiO _x /C	666.7	1000	400	[S3]
SiO _x /C	755	100	300	[S4]
FeSi-Si/SiO _x	616	500	500	[S6]
Si/SiO _x -CNF	57.5	3000	1000	[S7]
N dope $C@SiO_x$	623	1000	1000	[S8]
	714	1000	750	This
$SIO_x (w C (w C O O))$	/14	1000		work

Table S2: Comparison of specific capacity of $SiO_x@C@CoO$ sample with some other reported SiO_x -based electrode materials for LIBs.

Electrode	Li diffusion coefficient	Mass Loading	Dof	
Material	$(cm^2 s^{-1})$	(mg cm ⁻²)	NEI	
SiO _x -TiO ₂ @C	8.2*10 ⁻¹⁴	1.3	[S2]	
SiO _x /TiO ₂ @MLG	6.44*10-10	1.0	[17]	
SiO _x @TiO ₂ @C	1.6*10 ⁻¹²	1.4	[38]	
N-SiO _x /C/GF-4	10-12~10-9	0.8~1.2	[S10]	
ZIF@SiO _x	10-13~10-10	0.9~1.1	[S14]	
Si	10-12~10-11	~	[S15]	
SiO _x	10-11~10-12	~	[S15]	
SiO_x -hard carbon	8.28×10 ⁻¹⁰	0.5	[S16]	
SiO _x @C@CoO	7.05×10^{-8}	1.5	This work	

Table S3: Comparison of Li diffusion coefficients of $SiO_x@C@CoO$ samples with some other reported Si-based electrode materials for LIBs.

Figure S12: Cycling profiles of the SiO_x@CoO electrode at a current density of 1 A g⁻¹.

Figure S13: STEM HAADF images and the corresponding EDX elemental mappings of C, O, Si, and Co in $SiO_x@C@CoO$.

Reference

[S1] Z. Y. Sang, Z. H. Zhao, D. Su, P. S. Miao, F. R. Zhang, H. M. Ji and X. Yan, J. Mater. Chem. A, 2018, 6, 9064-9073.

[S2] Z. L. Li, H. L. Zhao, P. P. Lv, Z. J. Zhang, Y. Zhang, Z. H. Du, Y. Q. Teng, L. N. Zhao and Z. M. Zhu, *Adv. Funct. Mater.*, 2018, 28, 1605711.

[S3] M. S. Han and J. Yu, J. Power Sources, 2019, 414, 435-443.

[S4] Y. X. Liu, J. J. Ruan, F. Liu, Y. M. Fan and P. Wang, J. Alloy Compd., 2019, 802, 704-711.

[S5] D. Liu, C. R. Chen, Y. Y. Hu, J. Wu, D. Zheng, Z. Z. Xie, G. W. Wang, D. Y.

Qu, J. S. Li and D. Y. Qu, *Electrochim. Acta*, 2018, 273, 26-33.

- [S6] W. He, Y. J. Liang, H. J. Tian, S. L. Zhang, Z. Meng and W. Q. Han, *Energy Storage Mater.*, 2017, 8, 119-126.
- [S7] W. J. Zhang, Y. Q. Weng, W. C. Shen, R. T. Lv, F. Y. Kang and Z. H. Huang, *Carbon*, 2020, **158**, 163-171.
- [S8] J. L. Cui, H. B. Zhang, Y. Y. Liu, S. H. Li, W. X. He, J. L. Hu, and J. C. Sun, *Electrochim. Acta*, 2020, 334.
- [S9] X. T. Guo, Y. Z. Zhang, F. Zhang, Q. Li, D. H. Anjum, H. F. Liang, Y. Liu, C. S.
- Liu, H. N. Alshareef and H. Pang, J. Mater. Chem. A, 2019, 7, 15969-15974.
- [S10] W. J. He, T. F. Zhang, J. M. Jiang, C. L. Chen, Y. D. Zhang, N. Liu, H. Dou
- and X. G. Zhang, Acs Appl. Energ. Mater., 2020, 3, 4394-4402.
- [S11] M. H. Xu, J. J. Ma, G. L. Niu, H. X. Yang, M. F. Sun, X. C. Zhao, T. Y. Yang,
- L. Z. Chen and C. H. Wang, Acs Omega, 2020, 5, 16440-16447.
- [S12] L. Y. Chen, J. Zheng, S. Y. Lin, S. Khan, J. L. Huang, S. H. Liu, Z. R. Chen, D.
 C. Wu and R. W. Fu, *Acs Appl. Energ. Mater.*, 2020, 3, 3562-3568.
- [S13] K. Y. Zhang, H. Z. Mao, X. Gu, C. H. Song, J. Yang and Y. T. Qian, *Acs Appl. Mater. Inter.*, 2020, **12**, 7206-7211.
- [S14] Z. X. Long, R. S. Fu, J. J. Ji, Z. Y. Feng, and Z. P. Liu, Chemnanomat, 2020, 6, 1127-1135.
- [S15] K. Pan, F. Zou, M. Canova, Y. Zhu and J. H. Kim, J. Power Sources, 2019, 413,

20-28.

[S16] J. K. Dora, D. Nayak, S. Ghosh, V. Adyam, N. Yedla and T. K. Kundu, *Sustain Energ. Fuels*, 2020, **4**, 6054-6065.