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Seebeck coefficient calculation

The enhancement of the Seebeck coefficient by energy filtering was analyzed using 

the model of A. Popescu’s work.1 The transmission probability is described in the 

main text(Eq. 2). Before applying the model to calculation, the Seebeck coefficient for 

uncoated SnTe should be calculated correctly. The SnTe has a narrow gap(~ 0.18 eV) 

at the non-parabolic light hole band maximum, and below that there is a heavy hole 

band with a band offset around 0.3 ~ 0.4 eV.2 To consider the non-parabolicity and 

multi-band effect, we used following equations.2, 3

   Eq. S1
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Here, kB, e, η, α, and Δv are the Boltzmann constant, electron charge, reduced Fermi 

level, non-parabolicity parameter(= kBT/Eg), and band offset respectively. F is the 

Fermi-Dirac integral,3, 4
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where f is Fermi-Dirac distribution function and x is reduced energy(= E/kBT). The 

electrical conductivities for both bands are,2

                   Eq. S3
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where, C, m and D are the constant, effective mass and deformation potential 

respectively. Only the ratio of each conductivities is important, thus we used ratio 
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Dhh/Dlh = 0.5. The effective masses for both bands are obtained from the literatures2, 

mlh = 0.168me, mhh = 1.92me. The total Seebeck coefficient can be obtained by 

following equation.

                     Eq. S4lh lh hh hh
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To fit our experimental data of uncoated SnTe, we used temperature dependent Fermi 

level position and band offset as shown in Figure S4. 

To fit the data of coated grain CuInTe2/SnTe nanocomposites we utilized a 

transmission factor which is described in main text Eq. 2. But the variation of Seebeck 

coefficient among various amounts of coating could not be explained by variation of 

the barrier thickness(wB). Instead, we utilized fraction factor, fv, to fit the experimental 

data. In the real experiment, some portion of SnTe particles could be coated because 

of the variation of Cu, In precursors’ amounts. Therefore, to consider this factor we 

assumed that only some portion of the grains are coated, while the rest remain 

uncoated. The final transmission probability is described as following equations.

 Eq. S5
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Modeling of coherent phonon scattering5

The theoretical model for coherent phonon scattering is based on our previous study.5 

The model assumes the coated grain media as close-packed core-shell spheres. The 

detailed derivations of scattering cross section and relaxation time are described in our 

previous study. Here, we briefly describe the derivation of model in our previous 

study.

The model is based on Mie scattering theory about light scattering by multiple 

particles. Due to the wave-like behavior of phonon, the scattering of phonon could be 

discussed using octics.6-8 The light scattering in polycrystal transparent alumina had 

been discussed under assumption of transparent spheres.9 Thus, our previous model5 

assumes the polycrystal coated grains as close-packed core-shell spheres which are 

transparent for phonon waves. The phase lag of a phonon passing through the coating 

layer as induced by the acoustic impedance difference had been discussed by 

approximated Mie scattering theory. The obtained scattering cross section is given as,

Eq. S6
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where, k, k’, χ, α, and R are the wavevector in matrix, wavevector in coating layer, 

size parameter, incident angle, and radius of grain with coating thickness respectively. 

The parameter t in Eq. S6 is r/R, where r is radius of grain without the coating 

thickness. To consider the dependent(correlated) scattering effect,10, 11 the following 

formula was used.
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               Eq. S7{    
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Here, Q, G, Φ and Ω are the scattering efficiency, form factor, scattering phase 

function, and solid angle, respectively. Finally, the relaxation time for coherent 

phonon scattering by the coated grain structure is,

                        Eq. S81
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where, vg, ηCG, σD, and γ are the phonon group velocity, number density of coated 

grains, dependent scattering efficiency which is obtained from Eq. S7, and enskog 

factor which consider close-packing of scatterers, respectively. To calculate the lattice 

thermal conductivity, we utilized the Callaway model with relaxation time 

approximation.12, 13

   Eq. S9
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Here, the combined relaxation time is,

           Eq. S101 1 1 1 1 1 1

c N U e ph A B CG      

     

where, τN, τU, τe-ph, τA, τB, and τCG are the relaxation times for normal scattering, 

Umklapp scattering, electron-phonon scattering, alloy scattering, boundary scattering, 

and scattering caused by the coated grains, respectively. In the Eq. S9, the x, θ are 
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normalized energy of phonon(= ħω/kBT), debye temperature respectively. The 

formulas for each scattering mechanisms in Eq. S10 was same with previous study.5
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Lorenz number calculation

To estimate lattice thermal conductivity, we utilized Wiedemann Franz law. The 

Lorenz number could be obtained by a well-known formula which contains the Fermi 

integral.3 In our analysis, we used following formula to consider non-parabolicity.4

                    Eq. S11
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Here, F is calculated using Eq. S2. The obtained Lorenz number for uncoated SnTe is 

similar to that of our previous study.5 J.H. Bahk et al,14 had reported that, when there 

is potential barrier, the Lorenz number could be reduced to around 0.8 × 10-8 W/ΩK2. 

If we use same Lorenz number of uncoated SnTe for coated grain nanocomposites, 

the lattice thermal conductivities of coated grain SnTe nanocomposites become 

unrealistically small. Thus, we utilized the transmission probability(Eq. S5) for the 

calculation of Lorenz number. The TB obtained from Eq. S5 is also multiplied by the 

integrand in Fermi-Dirac integral. The results and electronic thermal conductivity are 

plotted on Figure S5.
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Table S1. Solubility product(Ksp) table15 for metal chalcogenides

solid E = S E =Se E = Te

CuE 5 × 10-36 2 × 10-40

In2E3 6 × 10-76

CdE 1 × 10-28 4 × 10-35 1 × 10-42

SnE 1 × 10-26 5 × 10-34

ZnE 3 × 10-25 1 × 10-27

Table S2. Carrier concentration and mobility for CuInTe2/SnTe coated grain 
nanocomposites

Samples Carrier concentration(cm-3) mobility (cm2/Vs)

uncoated SnTe 4.781 × 1019 6.976 × 102

CG-Cu:In/1:1 4.481 × 1019 5.640 × 102

CG-Cu:In/3:3 3.147 × 1019 6.933 × 102

CG-Cu:In/5:5 4.448 × 1019 3.823 × 102

CG-Cu:In/7:7 3.504 × 1019 3.270 × 102
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Figure S1. Result of cation exchange reaction with Zn precursor. The schematic 
shows why ZnTe is hardly formed by cation exchange with the host SnTe, rather 
ZnO is formed as by-product.
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Figure S2. Similarity of crystal structure of SnTe and CuInTe2
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Figure S3. STEM-EDS results for coated grain boundary structure
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Figure S4. Fitting parameters((a): Fermi level position from valence band 
maximum, (b): band offset) used in our Seebeck coefficient calculation for 
uncoated SnTe and coated grain nanocomposites
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Figure S5. Calculated Lorenz number(a) and electron thermal conductivity(b).
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