Supporting Information

The Dion-Jacobson perovskite CsSbCl₄: a promising Pb-free solar-cell absorber with optimal bandgap ~1.4 eV, strong optical absorption ~10⁵ cm⁻¹, and large power-conversion efficiency beyond 20%

Wen-hui Guo,^a Yao-hui Zhu,^{*b} Min Zhang,^{*c} Juan Du,^a Yu-lang Cen,^a Shi-

ming Liu,^{*a*} Yong He,^{*a*} Hong-xia Zhong,^{*d*} Xinqiang Wang^{*a*} and Jun-jie Shi*^{*a*}

^a State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University Yangtze Delta Institute of Optoelectronics, Peking University, Beijing 100871, China.

^b Physics Department, Beijing Technology and Business University, Beijing 100048, China

^c Inner Mongolia Key Laboratory for Physics and Chemistry of Functional Materials, College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China

^d School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China *Corresponding authors: E-mail: jjshi@pku.edu.cn; zhuyaohui@th.btbu.edu.cn; zhangm@imnu.edu.cn

Figure S1. Electronic structures derived from PBE calculations with the GGA-1/2 bandgap modulation are in excellent consistent with the accurate and time-consuming GW calculations for the 1-layer CsSbCl₄. In our GGA-1/2 calculations, we chosen 8 as the value of parameter *n* for Cl⁻ and Sb³⁺, then the parameter *CUT* is selected as 1.3 and 1.2 a.u. for Cl⁻ and Sb³⁺, respectively.

Figure S2. The electronic band structures of (a) CsBiCl₄ and (b) CsSbCl₄ 1-layer using the PBE method without SOC into account. The Bi-based DJ perovskite exhibits similar electronic dispersion to the Sb-based counterpart. However, the bandgap of CsBiCl₄ (1.71 eV) is much larger than that of CsSbCl₄ (0.70 eV). The atomic orbital energy of Bi-6*s* is clearly lower than that of Sb-5*s*, and this in turn lowers the valence band (dominated by Bi-6*s* orbitals) of CsBiCl₄ so as to enlarge its bandgap. Moreover, the realistic bandgap of CsBiCl₄ should be even larger (probably over 2 eV) since it is underestimated by the PBE functional. Therefore, CsBiCl₄ is not suitable for the solarcell absorber due to its overlarge bandgap.

Figure S3. The crystal structures of 1-, 2-, and 3-layer and bulk CsSbCl₄.

Material	Layer thickness	а	d	h
	1-layer	5.36	-	5.19
CsSbCl ₄	2-layer	5.36	3.66	5.19
	3-layer	5.31	3.31	5.22
	Bulk	5.28	3.30	5.25

Table S1. Fully optimized lattice parameter *a*, interlayer distance *d* and the single layer thickness *h* (in units of Å) in 2D layered lead-free halide perovskites $CsSbCl_4$.

Figure S4. The 2D perovskites will be transformed into AMX_3 perovskites if the stack cycle number *n* in 2D perovskites approaches infinity.

Figure S5. The schematic diagram for calculating the formation energy (FE) and decomposition energy (DE) of CsSbCl₄.

Figure S6. The electronic band structures in $CsSbCl_4$ (a) 1-layer (1L), (b) 2-layer (2L), (c) 3-layer (3L) and (d) bulk by using the PBE method, in which the right figure takes the influence of the spin-orbit coupling (SOC) into consideration.

Figure S7. The electronic band structures of CsSbCl₄ in 1-layer, 2-layer, 3-layer and bulk configurations. Here, the band dispersions of band edge are given by PBE with the SOC effect and the bandgaps are calculated by the GGA-1/2 approach.

Figure S8. The schematic diagram for obtaining the band edge energy position. Here, the Fermi level E_F , work function, ionization energy, and electron affinity are also labelled.

Figure S9. The band structures (a and b) and the corresponding square of the transition dipole moments between the band edges (c and d) for 3-layer (a and c) and bulk (b and d) CsSbCl₄.

Figure S10. The calculated PCE as a function of the thickness L of the MAPbI₃ absorber by using the SLME method. The results in this work are in agreement with ref. 1, which indicates the accuracy of our current calculations.

junction	derived from	the wxAMPS	code, the con	respondir	ng experim	ental parame	eters
from ref.	2 are also gi	ven for compa	rison.				
				610.000			
					2010/01/02/02	200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200	

Table S2. Photovoltaic device parameters of the TiO₂/MAPbI₃/spiro-OMeTAD

Material	Method	I _{SC} (mA/cm ²)	V _{OC} (V)	FF (%)	PCE (%)
MAPbI ₃	wxAMPS	22.65	1.20	83.28	22.64
	Exp	23.34	1.11	77.31	20.10

Table S3. Material parameters are used in the simulation of $CsSbCl_4$ - and MAPbI₃based perovskite solar cells. These parameters, including thickness, carrier mobility, donor (acceptor) concentration, effective density of states, and defect density, are taken from ref. 3.

Parameters	TiO ₂	Perovskite absorber	spiro- <u>OMeTAD</u>
Thickness (um)	0.03	0.5	0.2
Bandgap (eV)	3.2	1.55ª, 1.41 ^b	3.04
Relative permittivity	9	32ª, 10 ^b	3
Electron affinity (eV)	4	3.93ª, 3.77 ^b	2.11
Electron mobility (cm ² V ⁻¹ s ⁻¹)	20	2 ^a , 501 ^b	2×10 ⁻⁴
Hole mobility (cm ² V ⁻¹ s ⁻¹)	10	2ª, 22806 ^b	2×10 ⁻⁴
Donor concentration (cm ⁻³)	1×10^{16}	0	0
Acceptor concentration (cm ⁻³)	0	2.1×10^{17}	1×10^{18}
Effective density of states in the conduction band (cm ⁻³)	2.2×10 ¹⁸	2.2×10 ¹⁸	2.2×10 ¹⁸
Effective density of states in the valance band (cm ⁻³)	1.8×10^{19}	1.8×10 ¹⁹	1.8×10 ¹⁹
Defect density (cm ⁻³)	1×10^{17}	1×10^{14}	1×10^{16}

^a Parameters of MAPbI₃.

^b Parameters of CsSbCl₄.

References:

- 1. W.-J. Yin, T. Shi and Y. Yan, Adv. Mater., 2014, 26, 4653-4658.
- S. You, H. Wang, S. Bi, J. Zhou, L. Qin, X. Qiu, Z. Zhao, Y. Xu, Y. Zhang, X. Shi, H. Zhou and Z. Tang, *Adv. Mater.*, 2018, **30**, 1706924.
- 3. R. Jeyakumar, A. Bag, R. Nekovei and R. Radhakrishnan, *Sol. Energy*, 2019, **190**, 104-111.