Supporting Information:

Screening of Effective NRR Electrocatalysts among the Si-based

MSi₂N₄ (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) Monolayers

Yao Luo,¹ Mengyuan Li,¹ Yuxin Dai,¹ Xiaoli Zhang,¹ Renqiang Zhao,¹ Fan Jiang,¹ Chongyi Ling,²* Yucheng Huang¹*

¹College of Chemistry and Material Science, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu 241000, China

² School of Physics, Southeast University, Nanjing, China

E-mail: <u>lingchy@seu.edu.cn</u> (C.L); <u>huangyc@mail.ahnu.edu.cn</u> (Y.H)

Adsorption Species	Vibrational Frequencies (cm ⁻¹)					E _{ZPE} (eV)	TS (eV)	
*N-N	1363.954	592.946	400.387	295.246	289.073	185.576	0.230	0.038
*N-NH	3201.160 345.459	1312.248 317.936	988.396 239.098	751.756	621.717	474.223	0.551	0.075
*NH-NH	3293.861 683.174	3281.939 534.238	1303.369 425.233	1271.091 321.020	929.295 269.057	765.065 224.955	0.798	0.104
*N-NH ₂	3343.887 485.925	3234.774 382.437	1576.444 358.434	1208.313 328.733	1083.594 202.469	887.279 184.244	0.835	0.101
*NH-NH ₂	3429.753 1126.768 160.227	3375.781 914.628 119.730	3326.654 653.784 68.321	1609.939 525.350	1349.624 338.496	1275.536 268.952	1.125	0.158
*N	740.812	559.530	490.204				0.115	0.017
*NH	3168.836	989.956	816.674	583.708	439.831	368.494	0.391	0.033
*NH ₂	3438.404 255.257	3333.918 241.165	1501.757 202.327	702.281	554.504	391.843	0.659	0.093
*NH ₃	3466.364 389.538	3405.122 272.528	3238.110 162.142	1600.450 141.418	1591.995 58.889	1113.152 45.035	0.959	0.226

Table S1. Vibrational frequencies, zero point energies and entropy of differentadsorption species at 298.15 K on the $TiSi_2N_4$.

NO.	Substrate	Lattice constant (Å)	a(Å)	b(Å)
1	TiSi ₂ N ₄	2.932	8.796	8.796
2	$HfSi_2N_4$	3.022	9.066	9.066
3	$ZrSi_2N_4$	3.034	9.102	9.102
4	VSi ₂ N ₄	2.883	8.649	8.649
5	NbSi ₂ N ₄	2.965	8.895	8.895
6	$TaSi_2N_4$	2.967	8.901	8.901
7	CrSi ₂ N ₄	2.844	8.532	8.532
8	MoSi ₂ N ₄	2.909	8.727	8.727
9	WSi_2N_4	2.915	8.745	8.745

Table S2. Lattice parameters of the 2D unit cell and the corresponding 3×3 supercell of the MSi_2N_4 monolayers (in Å).

Table S3. Calculated adsorption free energy (ΔG) of N₂ on different size of the defective TiSi₂N₄ periodic supercells. $\Delta\Delta G$ is the energy difference with respect to ΔG on the 3×3 periodic supercell (in eV).

	ΔG	ΔΔG
3×3	-0.42	0
4×4	-0.45	0.03
5×5	-0.36	-0.06

Figure S1. Free energy diagrams of NRR catalyzed by the $TaSi_2N_4$ monolayer along mixed pathway without and with aqueous solvent.

Figure S2. Band structures of $TiSi_2N_4$, $TiSi_2N_4$ -nH (pre-hydrogenation) and V- $TiSi_2N_4$ -nH (with the N-vacancy). The Fermi level is set to zero.

Figure S3. Adsorption free energies of N_2 on 9 kinds of defective MSi_2N_4 materials.

Figure S4. Illustrations of surface reconstruction on the $ZrSi_2N_4$, VSi_2N_4 , $NbSi_2N_4$ and $MoSi_2N_4$ monolayers. The observed strong surface reconstruction means that N_2 cannot be captured again after NH_3 desorption.

Figure S5. Variations of the temperature and total energy vs time for AIMD simulations of $TiSi_2N_4$. Insets are the top and side views of snapshots at 10 ps.

Figure S6. Variations of the temperature and total energy vs time for AIMD simulations of $TaSi_2N_4$. Insets are the top and side views of snapshots at 10 ps.

Figure S7. (a) Top and (b) side views of N_2 adsorbed on $TaSi_2N_4$. (c) Atomic charge coloring chart and (d) charge density difference of N_2 on the $TiSi_2N_4$ monolayer. The isosurface value is set to be 0.003 e/Å³ and the positive and negative charges are shown in yellow and cyan, respectively.

Figure S8. Free energy diagrams for N_2 reduction on $TaSi_2N_4$ through mixed and consecutive mechanisms.

Figure S9. Free energy diagrams for HER on $TiSi_2N_4$ and $TaSi_2N_4$. The limiting potentials for HER $U_L(H_2)$, NRR $U_L(NH_3)$, and the difference between them $U_L(NH_3)$ - $U_L(H_2)$ on two catalysts.