Tuning interfacial chemical interaction for high-performance perovskite solar cell with PEDOT:PSS as hole transporting layer

Fei Wu, Kangrong Yan, Haotian Wu, Benfang Niu, Zhixin Liu, Yaokai Li, Lijian Zuo,* and

Hongzheng Chen*

State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular

Synthesis and Functionalization, Department of Polymer Science and Engineering,

Zhejiang University, Hangzhou 310027, P.R. China.

*E-mail: hzchen@zju.edu.cn (H. Chen), zjuzlj@zju.edu.cn (Lijian Zuo).

-Experimental Section

-Experimental Data

Experimental Section

Materials: Methyl-ammonium iodide (MAI, 99%) was ordered from MaterWin. PbI₂ (99%) and (6,6)-Phenyl-C61-butyric acid methyl ester (PC₆₁BM, 99.5%) were purchased from Xi'an Polymer Light Technology Corp. Bathocuproine (BCP, 99%) and N,N-dimethylformamide (DMF, 99%) were purchased from TCI. Poly(3,4ethylenedioxythiophene):poly-(styrenesulfonate) (PEDOT:PSS) aqueous solution (Al 4083) was purchased from Baytron. Lithium citrate tribasic tetrahydrate (98%), sodium citrate (98%) and tripotassium citrate (98%) were purchased from Adamas-beta. All reagents and solvents were used directly if not specified.

Device fabrication: The ITO-etched glass substrates were cleaned sequentially in detergent (2% vol Hellmenex), deionized water, acetone, isopropanol and ethanol ultrasonic bath for 20 min, respectively. After then, the substrates were dried in air oven at the temperature of 100 °C and treated by UV-Ozone treatment for 20 min before using. The hole transporting layers were prepared by spin coating precursor solution on ITO glass and annealed at 120 °C for 20 min, the PC M-PEDOT HTL was obtained by doping Potassium citrate (PC) at different concentrations. The x PC M-PEDOT denotes the doping concentration (x) with a unit of mol/L. MAI and PbI₂ (1:1 mole ratio) were dissolved in N, N'-dimethyl formamide (DMF) with the concentration of 1.6 M. The spin-coating process was 4000 rpm and accelerated speed of 2000 rpm/s for 30 s, and started initially after dropping 30 µl perovskite precursor solution to the substrate, and

then 180 µl chlorobenzene (CB) was dropped at around 6 s, and 30 µl PC₆₁BM (15 mg/ml in CB) solution was dropped at the following 15 s. After the spin-coating process, the perovskite layer was annealed at 100 °C for 5 min, and treated by DMF solvent vapor annealing (SVA) for 2 min. BCP (1 mg/ml in ethanol) was spin-coated at 3000 rpm for 30 s, followed by deposited 100 nm Ag in vacuum chamber under high vacuum of $2x10^{-4}$ Pa. The device area is 4 mm², which is defined by the shade mask.

Characterization: The photocurrent density-voltage (*J-V*) measurement was performed via the solar simulator (SS-F5-3A, Enlitech) along with AM 1.5G spectra whose intensity was calibrated by the certified standard silicon solar cell (SRC-2020, Enlitech) at 100 mV cm⁻². The external quantum efficiency (EQE) data were obtained by using the solar-cell spectral-response measurement system (QER, Enlitech). The dark *J–V* curve was measured by Keithley source 4200. Film morphologies were studied through the scanning electron-microscope (SEM) images obtained from a Hitachi S-4800. The SEM images of the perovskite were attained by selectively removing the PC₆₁BM layer from the perovskite/PC₆₁BM film by rinsing with chlorobenzene (CB). The X-ray diffraction (XRD) patterns were recorded at a scan rate of 10° min⁻¹ on Rigaku Ultima IV X-ray diffractometer with Cu K α radiation (0.15406 nm). The steady-state photoluminescence (steady PL) was taken on an FLSP920 from Edinburgh Instruments.

Experimental Data

Fig. S1 J-V curves of sample performances with different concentrations of PC.

C (M)	Voc (V)	$J_{\rm SC}$ (mA cm ⁻²)	FF	PCE (%)
0	0.893	22.06	82.83	16.31
0.025	0.958	22.01	82.44	17.26
0.035	1.099	21.93	81.90	19.66
0.05	1.113	21.60	78.76	18.86
0.07	1.090	19.61	77.87	16.57

Table S1 Summary of sample performances with different concentrations of PC.

Fig. S2 Absorption spectra of MAPbI₃ perovskite films on ITO/PEDOT:PSS and ITO/PC M-PEDOT substrates.

Fig. S3 Photos of the back of the ITO glass after spin-coating (a) PEDOT:PSS/MAPbI₃ and (b) PC M-PEDOT:PSS/MAPbI₃.

Fig. S4 The stability (in N₂) of PVSCs with different HTLs.

Fig. S5. The plot of PCE versus V_{OC} for the inverted PVSCs based on the PEDOT:PSS HTLs with doped, bilayer HTL and some other special treatments. (Details can be found in Table S2.)

Table S2 Summary of the performance for inverted MAPbI₃ PVSCs based on doped, bilayer HTL and special treatment of PEDOT:PSS HTLs. (ΔV_{OC} is the differential value of voltage boost device V_{OC} and reference V_{OC})

	Voc (V)			Work Function (eV)				
structure	^a V _{OC}	^b Voc	ΔV_{oc}	^a WF	^b WF	ΔWF	PCE (%)	year
ITO/PA-treated PEDOT:PSS/MAPbI ₃ /PCBM/Ag	0.842	0.877	0.035	5.2	4.8	-0.4	15.06	2015
ITO/m-PEDOT:PSS (1:2)/MAPbI ₃ /PC ₆₁ BM/Al	0.96	1.11	0.15	4.9	5.2	0.3	15.56	2016
ITO/b-PEDOT:PSS/MAPbI3/PC61BM/Bis-C60/Ag	0.88	1.06	0.18	4.91	5.31	0.4	15.7	2016
ITO/GGO-PEDOT:PSS/MAPbI3/PC61BM/LiF/Al	0.93	1.05	0.12				12.8	2016
ITO/PEDOT:PSS/rub/MAPbI3/PC61BM/BCP/Ag	0.81	0.86	0.05	4.88	5.06	0.18	14.4	2017
ITO/PEDOT:PSS/BPQD/MAPbI ₃ /PCBM/Ag	0.915	1.014	0.099	5.1	5.2	0.1	16.69	2017
ITO/PDA:PEDOT:LS/MAPbI ₃ /PCBM/Al	0.86	1.02	0.16	5.0	5.45	0.45	12.05	2018
ITO/PEDOT:PSS/GO:PEG/MAPbI3/PCBM/Ag	0.962	1.062	0.1	4.9	5.2	0.3	16.89	2018
ITO/PEDOT:PSS/GO:PEG/MAPbI3/PCBM/MoS2/A	0.962	1 125	0 173	4.0	5.2	0.3	10.14	2018
g	0.902	1.135	0.173	4.9	5.2	0.3	19.14	2018
ITO/PEDOT:PSS:NiPcS4/MAPbI3/PC61BM/BCP/Ag	1.02	1.08	0.06	5.08	5.14	0.06	18.9	2018
ITO/PEOz-	0.96	1.075	0 115	49	53	0.4	17 30	2018
PEDOT:PSS/MAPbI ₃ /PC ₆₁ BM/Bphen/Ag	0.90	1.075	0.115	4.9	5.3	0.4	17.39	2018
ITO/PEDOT:PSS-CsI/MAPbI3/PC61BM/Ag	1.003	1.084	0.081	5.10	5.26	0.16	20.22	2019
ITO/PEDOT:PSS:TX/MAPbI ₃ /C ₆₀ /BCP/Ag	0.90	0.94	0.04	5.30	4.88	-0.42	16.23	2019
ITO/PEDOT:PSS/SnO2/MAPbI3/PC61BM/Ag	0.86	1.03	0.17	5.1	4.2	-0.9	18.04	2019
ITO/Na ₃ C ₆ H ₅ O ₇ -PEDOT:PSS/	0.92	0.99	0.07	5 11	5.06	0.05	11 21	2019
MAPbI ₃ /PC ₆₀ BM/BPhen/Ag	0.92	0.99	0.07	5.11	5.00	-0.05	11.21	2019
ITO/urea-	0.94	1.03	0.00				18 80	2019
PEDOT:PSS/MAPbI ₃ /PCBM/Rhodamine/Ag	0.74	1.05	0.09				10.00	2017
ITO/PEDOT:PSS	1.01	1.04	0.03				19.4	2019
(EMIC)/MAPbI ₃ /PC ₆₁ BM/C ₆₀ /BCP/Ag	1.01	1.04	0.05				10.4	2015
ITO/PEDOT:PSS(EMIC)/MAPbI ₃ /S-	1.01	1.08	0.07				20.06	2019
acetylthiocholine chlorde /C ₆₀ /BCP/Ag		1.00					20.00	
ITO/PEDOT:PSS:CuSCN/MAPbI3/PCBM/C60/LiF/	0.96	1.02	0.06				15.3	2020
Al	0.90		0.00				15.0	
FTO/PEDOT:PSS/NPB/MAPbI3/PC61BM/BCP/Ag	0.96	1.05	0.09	4.92	5.40	0.48	18.40	2020
ITO/PEDOT:PSS/SrGO/MAPbI3/PC61BM/BCP/Ag	0.99	1.04	0.05	5.02	5.34	0.32	16.01	2020
ITO/PEDOT:PSS-VOx/MAPbI3/PC61BM/C60/Ag	0.84	1.02	0.18	5.0	5.5	0.5	18.0	2020
ITO/PC M-PEDOT/MAPbI ₃ /PC ₆₁ BM/BCP/Ag	0.893	1.099	0.206	4.89	4.55	-0.34	19.66	This work

 ${}^{b}V_{OC}$ and ${}^{a}V_{OC}$ are the open-circuit potentials of PVSCs based on PEDOT:PSS with and without treatment,

respectively. ^bWF and ^aWF are the work functions of PEDOT:PSS with and without treatment.

Fig. S6 The molecular structures of PM6 and BO-4Cl.

Table S3 Photovoltaic performances of PVSC and OSC with PEDOT:PSS and PC M-PEDOT under AM1.5 G illumination (100 mW cm⁻²).

Device	HTL	$V_{\rm OC}\left({ m V} ight)$	$J_{\rm SC}$ (mA cm ⁻²)	FF	PCE (%)
PVSC	PEDOT:PSS	0.916	19.17	77.19	13.55
$(Cs_{0.05}MA_{0.09}FA_{0.81}Pb_1I_{2.86}Br_{0.09})$	PC M-PEDOT	0.943	20.75	76.96	15.06
OSC	PEDOT:PSS	0.726	23.26	69.72	11.94
(PCE10:IEICO-4F)	PC M-PEDOT	0.590	23.45	44.24	6.20

Fig. S7 The device performance of PVSCs with ITO/HTL/ Cs_{0.05}MA_{0.09}FA_{0.81}Pb₁l_{2.86}Br_{0.09}/PC₆₁BM/BCP/Ag configuration.

Fig. S8 The device performance of OSCs with ITO/HTL/PCE10:IEICO-4F/PFN-Br/Ag configuration.

Fig. S9 Cross-sectional SEM images of perovskite films on (a) PEDOT:PSS and (b) PC

M-PEDOT substrates.

Fig. S10 AFM images obtained for the surfaces of (a) PEDOT:PSS and (b) PC M-PEDOT.

Fig. S11 Contact angles of (a) PEDOT:PSS and (b) PC M-PEDOT.

Fig. S12 J–V characteristics of PVSCs swept in the dark.

Fig. S13 *J–V* characteristics of devices with ITO/HTL/MAPbI₃/Spiro-OMeTAD/Ag configuration utilized for estimating the hole mobility and defect density for perovskite films on (a) PEDOT:PSS and (b) PC M-PEDOT.

HTL	<i>Voc</i> (V)	J_{SC} (mA cm ⁻²)	$J_{SC} cal$ (mA cm ⁻²)	FF	PCE (%)
PEDOT:PSS	0.893	22.06	20.96	82.83	16.31
0.035 CA	0.919	21.77	/	82.56	16.48
0.035*3 KAc	0.906	22.00	/	82.64	16.50
LC M-PEDOT	1.008	21.95	21.05	81.49	17.91
SC M-PEDOT	1.071	21.71	21.34	81.33	18.93
PC M-PEDOT	1.099	21.93	20.99	81.90	19.66

Table S4 Photovoltaic performances of PVSCs with different HTLs under AM1.5 G illumination (100 mW cm⁻²).