Supplementary Information

In-situ coating of lithiophilic interphase on a biporous Cu scaffold with vertical microchannels for dendrite-free Li metal batteries

Li-Min Wang, Xiao-Kuan Ban, Zong-Zi Jin, Ran-Ran Peng, Chu-Sheng Chen* and Chun-Hua Chen*

CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering,, University of Science and Technology of China, Hefei 230026, Anhui, China

E-mail: cchchen@ustc.edu.cn; ccsm@ustc.edu.cn

Thermal oxidation process:

Actually, the thermal oxidation of Cu mainly includes the following two steps: 2Cu $+ 1/2O_2 \rightarrow Cu_2O$; $Cu_2O + 1/2O_2 \rightarrow 2CuO$. It has been reported that Cu is first oxidized to Cu₂O, only when the temperature is above 260 °C, Cu₂O will further react with oxygen to form CuO.¹ As shown in **Fig. S1**, only a small amount of Cu₂O and no CuO is formed at 250 °C. At 300 °C and higher temperatures, CuO is formed and increases with the temperature, while Cu₂O still occupies a large proportion. CuO can be produced directly only at higher temperatures, however, the scaffold becomes fragile at 400 °C and higher temperatures, and producing too much CuO_x will consume Li excessively. Therefore, we set the oxidation temperature at 300 °C.

Fig. S1. The XRD patterns of the scaffold after oxidation at 250, 300, 400 and 500 °C for 2 h, respectively.

Fig. S2. The Raman spectrum of $CuO_x@Cu$.

Fig. S3. The voltage-time profiles of $CuO_x@Cu$ half cell in the 1st-25th cycles at 1 mA cm⁻².

Fig. S4. The Coulombic efficiency comparison of $CuO_x@Cu$, P-Cu and Cu foil under the condition of 4 mAh cm⁻² and 1 mA cm⁻².

Fig. S5. The equivalent circuit diagram for Fig. 6d and e.

Fig. S6. The CV curves of $\text{Li}//\text{CuO}_x$ (a) Cu cell between 0.01-3 V at a scan rate of 0.1 mV s⁻¹.

The details of the molten Li infusion process:

In an argon-filled glove box, a stainless steel plate was placed on the heating table, and heat up to 350 °C to melt Li. Then a piece of CuO_x @Cu scaffold contacted the molten Li and took in it quickly, and the molten Li could fully filled the inner space within a few seconds. Subsequently, the composite electrode cooled down and was stored in the glove box.

Fig. S7. (a) The cross-section image and (b) surface image of composite electrode with CuO_x@Cu and Li metal prepared by the molten Li infusion method. (c) The galvanostatic charging curve of the composite electrode at a current density of 0.5 mA cm⁻². The maximum capacity is calculated as $65 \text{ h} \times 0.5 \text{ mA cm}^{-2} = 32.5 \text{ mAh cm}^{-2}$, and the thickness is about 250 µm, so the volumetric capacity is $32.5 \div 0.025 = 1300 \text{ mAh cm}^{-3}$.

Fig. S8. The cycling performance of the $CuO_x@Cu-Li$ (prepared by a molten Li infusion method) symmetric cell under the condition of 1 mA cm⁻² and 1 mAh cm⁻² in (a) the ether-based electrolyte and (b) the carbonate-based electrolyte.

	1 st			40 th		
	$R_{\Omega} \left(\Omega \right)$ cm ²	$R_i (\Omega cm^2)$	$\begin{array}{c} R_{ct}\left(\Omega\right.\\ cm^{2}\right) \end{array}$	$R_{\Omega} (\Omega \ cm^2)$	$R_i (\Omega cm^2)$	$R_{ct} \left(\Omega \ cm^2 ight)$
CuO _x @Cu	1.5	19.6	14.3	2.0	2.7	12.9
P-Cu	1.9	39.6	20.6	4.3	2.8	16.0
Cu foil	1.2	48.5	27.1	2.4	29.8	26.6

Table S1. The fitted parameters for Fig. 6d and e, and the area is 0.785 cm².

Table S2. The performance comparison of $CuO_x@Cu$ with other reported lithiophilic scaffolds in half cells.

Materials	Current density [mA cm ⁻²]	Capacity [mA h cm ⁻²]	Cycle number	Coulombic efficiency [%]
Ni-Cu-CuO hybrid	1	1	250	> 95
structure ²	3	1	100	> 90
Al layer coated 3D Cu ³	0.5	2	85	~ 98.6
Cu ₉₉ Zn alloy	0.2	0.4	400	99
coated Cu ⁴	0.5	1	200	> 97
Lithiated ZnO	1	1	200	99.2
on Cu foil ⁵	3	1	200	93.3
CuON nanoarray on Cu foam ⁶	2	1	100	> 98
ZnO modified Ni foam ⁷	1	1	300	> 98
Graphene coated Cu foam ⁸	2	1	150	97.4
CuO nanosheets on Cu foil ⁹	1	1	180	94

N-doped graphene- coated Ni foam ¹⁰	1	1	200	98	
This work	1	1	>520	98.8	
	3	1	240	98.4	
	5	1	170	98.0	
	1	4	120	99.1	

Reference

- F. W. Young, J. V. Cathcart and A. T. Gwathmey, *Acta Metallurgica*, 1956, 4, 145-152.
- S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng, J. Cai, J. Shen, Y. Zhu, K. Zhang and W. Zhang, *Adv. Mater.*, 2018, 30.
- H. Ye, Z. J. Zheng, H. R. Yao, S. C. Liu, T. T. Zuo, X. W. Wu, Y. X. Yin, N. W. Li, J. J. Gu, F. F. Cao and Y. G. Guo, *Angew. Chem. Int. Ed. Engl.*, 2019, 58, 1094-1099.
- S. Liu, X. Zhang, R. Li, L. Gao and J. Luo, *Energy Storage Mater.*, 2018, 14, 143-148.
- G. Wang, X. Xiong, P. Zou, X. Fu, Z. Lin, Y. Li, Y. Liu, C. Yang and M. Liu, Chem. Eng. J., 2019, 378.
- 6. M. Lei, Z. You, L. Ren, X. Liu and J.-G. Wang, J. Power Sources, 2020, 463.
- 7. C. Sun, Y. Li, J. Jin, J. Yang and Z. Wen, J. Mater. Chem. A, 2019, 7, 7752-7759.
- G. Yang, J. Chen, P. Xiao, P. O. Agboola, I. Shakir and Y. Xu, J. Mater. Chem. A, 2018, 6, 9899-9905.
- C. Zhang, W. Lv, G. Zhou, Z. Huang, Y. Zhang, R. Lyu, H. Wu, Q. Yun, F. Kang and Q.-H. Yang, *Adv. Energy Mater.*, 2018, 8.
- R. Song, B. Wang, Y. Xie, T. Ruan, F. Wang, Y. Yuan, D. Wang and S. Dou, J. Mater. Chem. A, 2018, 6, 17967-17976.