Appendix A

Supplementary Information

Silicon-Integrated Lead-Free BaTiO$_3$-Based Film Capacitors with Excellent Energy Storage Performance and Highly Stable Irradiation Resistance

Fan Zhao,ab Yilin Wu,ab Yanzhu Dai,ab Guangliang Hu,ab Ming Liu,*ab Runlong Gao,cd Linyue Liu,*c Xin Liu,c Yonghong Cheng,*c Tian-Yi Hu,b Chunrui Ma,b Dengwei Hu,f Xiaoping Ouyange and Chun-Lin Jiaabg

aSchool of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
bState Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
cState Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an 710024, China
dSchool of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
eState Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
fFaculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Phytochemistry of Shaanxi Province, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji, Shaanxi, 721013 P. R. China
gErnst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, D-52425 Jülich, Germany

* Email address: m.liu@xjtu.edu.cn; 13619269436@163.com; cyh@xjtu.edu.cn
Fig. S1 A low-magnification dark field STEM image of an HfO$_2$ buffer layer deposited on Si substrate by atomic layer deposition technique.
Fig. S2 (a) Typical XRD θ-2θ scans of the BZTS/HfO$_2$ thin films with different thicknesses deposited on Si substrate. (b) The Wei-bull distribution and the fitting lines of E_b for the BZTS/HfO$_2$ thin films with different thicknesses. (c) P-E hysteresis loops of the BZTS/HfO$_2$ thin films with different thicknesses. (d) W_{re} and η of the BZTS/HfO$_2$ thin films at room temperature depending on film thickness.

Fig. S2a shows the XRD θ-2θ scans of the BZTS/HfO$_2$ thin films deposited on Si substrate with thicknesses of 139, 276, 415 and 700 nm. The results show that the BZTS/HfO$_2$ thin films of different thicknesses grown on the Si substrate also show perovskite-phase polycrystalline films. It can be seen from the Fig S2a that the diffraction intensity of the BZTS/HfO$_2$ films increases with increasing thickness, except for the BZTS/HfO$_2$ films with a thickness of 700 nm. At the same time, we also noticed that the sample with a thickness of 700 nm had a stronger (011) peak, which may be due to its stronger orientation. According to Eq. (1), E_b and $P_{max} - P_f$ are the key parameters determining the W_{re} of dielectric capacitors. The fitting Wei-bull distribution of E_b of the BZTS/HfO$_2$ thin films with different thicknesses at RT are
shown in Fig. S2b. It can be seen that the E_b of the BZTS/HfO$_2$ thin films first increases and then decreases as the thickness increases. The nonmonotonic variation of E_b with film thickness may be attributed to the following reasons: First, we obtained the highest E_b value (about 8.78 MV/cm) in films with optimized thicknesses of ~415 nm. E_b decreases in thicker films because of the size effect [$E_b \propto 1/\sqrt{\text{thickness}}$].\(^1\) Secondly, when the film thickness exceeds a certain level, the contribution of the thinner HfO$_2$ buffer layer to the breakdown resistance of the film is relatively weak, which may lead to the decrease of E_b. Finally, it may be attributed to the fact that when the film exceeds a certain thickness, its crystalline quality deteriorates as the thickness increases and defects in the film increase, resulting in a decrease in E_b. Fig. S2c shows the P-E loops of the BZTS/HfO$_2$ thin films with different thickness. The energy storage parameters of the BZTS/HfO$_2$ thin films obtained by P-E loops integral calculation are summarized in Table S1. It can be seen that both P_{max} and P_r increase first and then decrease with the increase of film thickness, and $P_{\text{max}} - P_r$ reaches the maximum value when the thickness is about 415 nm. Fig. S2d shows the change of W_{re} and η of the BZTS/HfO$_2$ thin films with the thickness. The results show that the change of W_{re} with thickness of the BZTS/HfO$_2$ thin films is consistent with that of E_b and $P_{\text{max}} - P_r$. The ultrahigh W_{re} of 93.37 J/cm3 with η of 70.22% at RT when the film thickness is about 415 nm is mainly due to its higher E_b and $P_{\text{max}} - P_r$.

Table S1

Energy storage parameters of BZTS/HfO$_2$ thin films with different thickness grown on Si substrate at room temperature

<table>
<thead>
<tr>
<th>Thickness /nm</th>
<th>E_b/MV·cm$^{-1}$</th>
<th>P_{max}/μC·cm$^{-2}$</th>
<th>P_r/μC·cm$^{-2}$</th>
<th>W_{re}/J·cm$^{-3}$</th>
<th>η/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>7.20</td>
<td>23.65</td>
<td>4.01</td>
<td>55.32</td>
<td>70.83</td>
</tr>
<tr>
<td>276</td>
<td>8.08</td>
<td>28.89</td>
<td>5.14</td>
<td>72.08</td>
<td>70.33</td>
</tr>
<tr>
<td>415</td>
<td>8.78</td>
<td>34.78</td>
<td>7.07</td>
<td>93.37</td>
<td>70.22</td>
</tr>
<tr>
<td>700</td>
<td>5.11</td>
<td>24.96</td>
<td>1.81</td>
<td>49.67</td>
<td>81.73</td>
</tr>
</tbody>
</table>
Fig. S3 (a) Frequency dependence of ε_r and $\tan\delta$ for the BZTS/HfO$_2$ thin films with different thicknesses at room temperature. (b) Temperature dependence of ε_r and $\tan\delta$ for the BZTS/HfO$_2$ thin films with different thicknesses at 1 KHz.

Fig. S3a shows the frequency dependence of ε_r and $\tan\delta$ for the BZTS/HfO$_2$ thin films with different thicknesses at RT. The results show that the ε_r of the BZTS/HfO$_2$ thin films with different thickness decreases monotonously with the increase of frequency. This is mainly due to the polarization relaxation. The ε_r of the BZTS/HfO$_2$ thin films gradually increases with the increase of the film thickness, which is mainly due to the influence of the interface layer with low dielectric constant on the BZTS/HfO$_2$ thin films gradually weakens with the increase of the film thickness. In addition, it can be observed from Fig. S3a that the $\tan\delta$ gradually decreases as the thickness of the BZTS/HfO$_2$ thin films. Fig. S3b shows the temperature dependence of ε_r and $\tan\delta$ for the BZTS/HfO$_2$ thin films of different thicknesses. The results show that the BZTS/HfO$_2$ thin films with thickness of 415 nm has the best thermal stability.
Fig. S4 After He$^+$ irradiation with different doses, the Wei-bull distribution and the fitting lines of E_b for the BZTS/HfO$_2$ thin film capacitors.
Fig. S5 After neutron irradiation with different doses, the Wei-bull distribution and the fitting lines of E_b for the BZTS/HfO$_2$ thin film capacitors.
References