A Thin and High Strength Composite Polymer Solid-State Electrolyte

with Highly Efficient and Uniform Ion Transport Network

Peiran Shi,^{ab} Jiabin Ma,^{ab} Yanfei Huang,^c Wenbo Fu,^d Song Li,^{ab} Shuwei Wang,^{ab} Danfeng Zhang,^{ab} Yan-Bing He^{*a} and Feiyu Kang^{*ab}

^a Shenzhen Geim Graphene Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China

^b Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.

^c College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, P. R. China

^d Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, PR China

*Corresponding authors' e-mail address: he.yanbing@sz.tsinghua.edu.cn (Yan-Bing He) fykang@mail.tsinghua.edu.cn (Feiyu Kang)

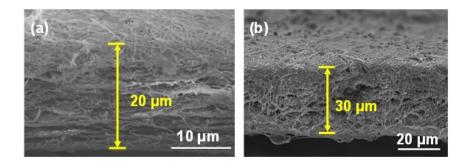


Fig. S1. Cross-section SEM images of (a, b) the PAN network

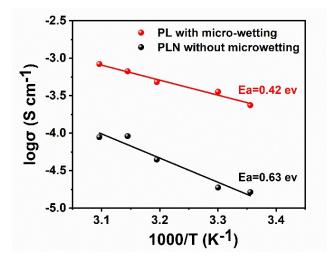
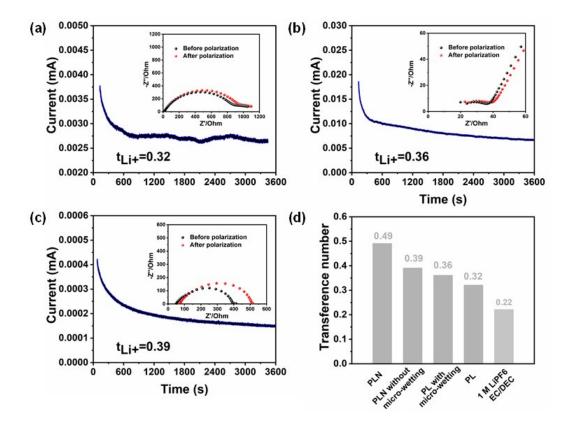



Fig. S2. E_a of PLN without micro-wetting and PL with micro-wetting.

Fig. S3. Transference number of (a) PL, (b) PL with micro-wetting, (c) PLN without micro-wetting and (d)1 M LiPF₆ EC and DEC liquid electrolyte

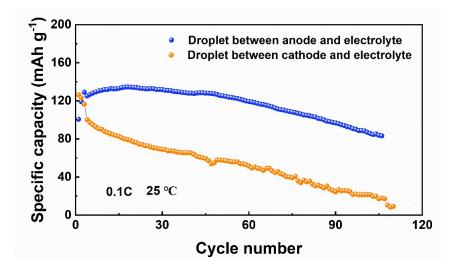


Fig. S4. Galvanostatic cycles of the PEO-based batteries operating at 0.1 C, 25 °C.

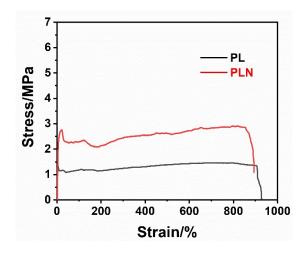
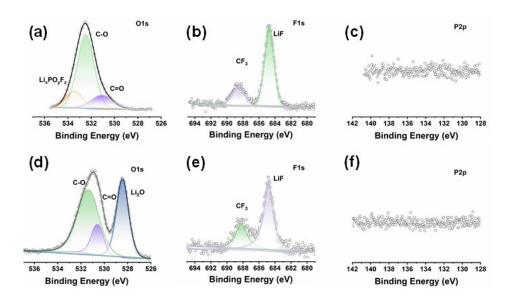
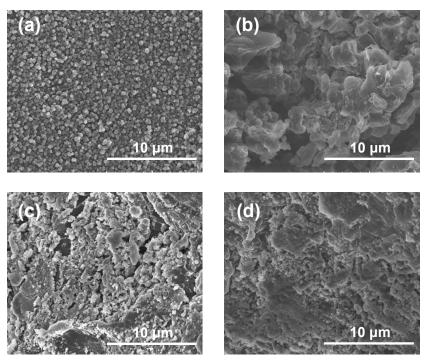




Fig. S5. Stress-strain curves of PL and PLN solid electrolytes.

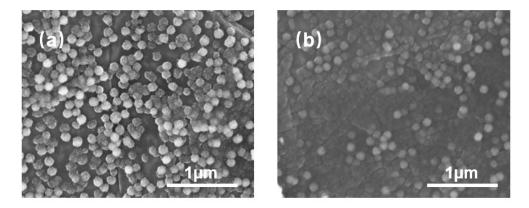

The PLN electrolyte with rigid PAN network shows enhanced mechanical properties (2.73 MPa) than that of PL (1.28 MPa).

Fig. S6. XPS spectra of (a) O 1s (b) F 1s and (c) P 2p on the surface of Li anode from Li/PL with micro-wetting/Li after 40 cycles; XPS spectra of (d) O 1s (e) F 1s and (f) P 2p on the surface of Li anode from Li/PLN without micro-wetting/Li after 40 cycles.

Fig. S7. Typical top-view SEM images of Li anode with (a) PLN, (b) PL, (c) PL with micro-wetting and (d) PLN without micro-wetting SSEs.

Fig. S8. High magnification SEM images of the Li anode with PLN electrolyte in the end of (a) charge and (b) discharge processes.

	Resistance (Ω)	Thickness (µm)	Ionic conductivity
			(×10 ⁻⁴ S/cm)
PL	1600	100	0.031
PLN with out	832	60	0.036
micro-wetting			
PL with micro-	56	100	0.892
wetting			
PLN	22	55	1.25

Table S1. Ionic conductivity of SSEs