Electronic supplementary information

Electrocatalytic Fixation of N₂ into NO₃⁻: Electron Transfer between Oxygen Vacancies and Loaded Au in Nb₂O_{5-x} Nanobelts to Promote Ambient Nitrogen Oxidation

Yintong Zhang^a, Feng Du^d, Ruyi Wang^a, Xintong Ling^a, Xiaoyong Wang^a, Qing Shen ^f, Yujie Xiong^c, Tao Li^{*b}, Yong Zhou^{*a,e}, and Zhigang Zou^{a,e}

^a School of Physics, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
^b Engineering Technology Research Center of Henan Province for Solar Catalysis, School of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. China.

^c Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

^d Institute of Materials Science and Devices, School of materials science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China.

^e School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangzhou 518172, P. R. China.

^f University of Electro Communication, Graduate School of Informatics and Engineering, 1-5-1 Chofugaoka, Chofu, Tokyo 1828585, Japan.

1

Fig. S1. SEM images of Nb₂O₅.

Fig. S2. (a) TEM image and (b) HRTEM image of Nb_2O_{5-x} .

Fig. S3. (a) TEM image and (b) HRTEM image of Au-Nb₂O₅.

	Mass of samples	Volume of solution	Tested
Au-Nb ₂ O _{5-x}	10.36 mg	250 mL	0.257 mg/L
Au-Nb ₂ O ₅	8.52 mg	250 mL	0.201 mg/L

Table S1. Test results of ICP-MS.

Fig. S4. XPS survey spectra of Nb_2O_5 , Nb_2O_{5-x} , Au- Nb_2O_5 and Au- Nb_2O_{5-x} .

Fig. S5. XPS spectra of Nb 3d of Nb₂O₅ and Au-Nb₂O₅.

Fig. S6. EIS Nyquist plots of Nb₂O₅, Nb₂O_{5-x}.

Fig. S7. Photograph of the reactor for NOR.

Fig. S8. (a) Ion chromatogram curves of a series of standard nitrate solution; (b) calibration curve of IC for nitrate concentration; (c) the range of peak area for nitrate in a typical IC curve; (d) IC curve for 0.1 M Na₂SO₄.

It is worth noting that there is a certain amount of nitrate in the applied commercial Na_2SO_4 electrolyte because of the impurities. The impurity contents fluctuate within a

certain range in different batches of medicines, which may cause the difference in initial concentration of nitrate. Thus, in each NOR test, we detected both the initial concentration and the final concentration of nitrate in the anode electrolyte and calculated the net increasing amount which was adopted as the yield of nitrate. To ensure the reliability of our method, we did a series of experiment.

Fig. S9 a shows the initial and final IC curves of cathode electrolyte in a typical NOR test, which indicates the concentration of nitrate doesn't change, suggesting that Nafion 115 membranes can effectively prevent the transfer of nitrate between cathode and anode. Additionally, we put a piece of clean and unused Nafion 115 membrane into 0.1 M Na₂SO₄ solution in a beaker and another piece of Nafion 115 membrane which had been used for NOR test but without further treatment into another beaker with 0.1 M Na₂SO₄ solution as well. Both of them were soaked for 10 hours. The changes of the nitrate concentration in both solutions were detected and the results are shown in Fig. S9 b and c. The concentration in both solutions also didn't change, which indicates that the Nafion 115 membrane don't absorb or desorb nitrate in the electrolyte during the NOR test and affect the test results. Therefore, according to the above results, we confirm that the increment in the nitrate concentration of anode electrolyte can be adpoted to determine the NOR performance.

Fig. S9. (a) Initial and final IC curves of cathode electrolyte in a typical NOR performance test; initial and final IC curves of 0.1 M Na₂SO₄ solutions which were used to soak (b) unused Nafion membrane and (c) Nafion membrane after NOR test.

Fig. S9 a	Peak area	Concentration increment	
Initial	59996	~0	
Final	60933		
Fig. S9 b	Peak area	Concentration increment	
Initial	170600	~0	
Final	171580		
Fig. S9 c	Peak area	Concentration increment	
Initial	216564	~0	
Final	217339		

Table S2. The peak area of IC curves in Fig. S9.

Fig. S10. UV absorption spectra of pure water and 0.1 M Na₂SO₄ solution.

It is worth noting that there is a certain amount of nitrate in the applied commercial Na_2SO_4 electrolyte because of the impurities, which is consistent with the results of IC data. Thus, to eliminate the effects of the impurities, we used 0.1 M Na_2SO_4 solution as the baseline for all the UV tests.

Fig. S11. (a) UV absorption spectra of a series of standard nitrate solution in 0.1 M Na₂SO₄; (b) calibration curve of UV absorption for nitrate concentration.

Fig. S12. LSV curves of Au-Nb₂O_{5-x} at a scan rate of $5mV s^{-1}$ in Ar- and N₂-saturated 0.1 M Na₂SO₄ solution.

Fig. S13. Chronoamperometry curves of Au-Nb₂O_{5-x} at different applied potentials in $0.1 \text{ M} \text{ Na}_2\text{SO}_4$ solution for NOR performance test.

Fig. S14. Initial and final IC curves of Au-Nb₂O_{5-x} for NOR performance test at (a) 2.2 V, (b) 2.3 V, (c) 2.4 V and (d) 2.5 V.

Table S3. The peak area of IC curves in Fig. S12 and the calculated concentration increments of nitrate in each test.

Potential	2.2V		2	.3V
	Peak area	Concentration	Peak area	Concentration
		increment		increment
0h	94922	0.0598	53362	0.008
2h	109026		76576	0.098
	2.4V		2.5V	
	Peak area	Concentration	Peak area	Concentration
		increment		increment
Oh	50441	0.1527	69820	0.041
2h	86394		79473	0.041

Fig. S15. (a) UV adsorption spectra of the electrolyte after NOR performance test for $Au-Nb_2O_{5-x}$ at different potentials; (b) the calculated yield rates of $Au-Nb_2O_{5-x}$ at different potentials by UV method.

Table S4. The peak area of IC curves and the corresponding concentration of nitratefor time-dependent NOR test of Au-Nb $_2O_{5-x}$.

Operational time	Peak area	Concentration
0h	144887	0.1445
2h	187295	0.3048
4h	214310	0.4196
6h	239338	0.5259

Fig. S16. Chronoamperometry curves of time-dependent NOR test of Au-Nb₂O_{5-x} at 2.4 V.

Fig. S17. (a) UV adsorption spectra of the electrolyte for the time-dependent NOR test of Au-Nb₂O_{5-x} at 2.4V; (b) the calculated yield rates by UV method.

Fig. S18. (a) Nitrate yield rates and FEs and (b) chronoamperometry curves of Au-Nb₂O_{5-x} for NOR cycling test at 2.4 V; (c)-(e) initial and final IC curves of electrotyle for each cycle of Au-Nb₂O_{5-x} NOR cycling test at 2.4 V.

Table S5. The peak area of IC curves in Fig. S14 and the calculated concentration increments of nitrate in each cycle test.

Cycle-1	Peak area	Concentration increment	
0h	154722	0.1460	
2h	189302	0.1469	
Cycle-2	Peak area	Concentration increment	
0h	184386	0.1267	
2h	216564	0.1307	
Cycle-3	Peak area	Concentration increment	
0h	179576	0.133	
2h	210884		

Fig. S19. (a) SEM image, (b) TEM image and (c) HRTEM image of Au-Nb₂O_{5-x} after cycling NOR test at 2.4 V.

Fig. S20. (a) XRD pattern and XPS spectra of (b) O 1s, (c) Nb 3d and (d) Au 4f of Au-Nb₂O_{5-x} after cycling NOR test at 2.4 V.

Fig. S21. Initial and final IC curves of electrotyle for control experiments of Au-Nb₂O_{5-x} (a) in Ar at 2.4 V and (b) in N₂ with an open circuit.

Table S6. The peak area of IC curves in Fig. S17 and the calculated concentration increments of nitrate in electrolyte.

In Ar	Peak area Concentration increm		
0h	81034	~0	
2h	80797		
In N ₂ with an open circuit	Peak area	Concentration increment	
0h	70309	~0	
2h	70588		

Fig. S22. Initial and final IC curves of (a) Nb foil, (b) Nb_2O_5 , (c) Nb_2O_{5-x} and (d) Au- Nb_2O_5 for NOR performance test at 2.4 V.

Table S7. The peak area of IC curves in Fig. S18 and the calculated concentration increments of nitrate in electrolyte.

	Au-Nb ₂ O ₅		Nb ₂ O _{5-x}	
	Peak area	Concentration	Peak area	Concentration
		increment		increment
0h	190112	0.0606	56459	0.0704
2h	204377		73037	0.0704
	Nb ₂ O ₅		Nb foil	
	Peak area	Concentration	Peak area	Concentration
		increment		increment
0h	101575	0.024	185398	0.0068
2h	107223		186998	0.0008

Fig. S23. (a) UV adsorption spectra of the electrolyte for NOR test of comparison samples at 2.4V; (b) the calculated nitrate yield rates of comparison samples by UV method.

Fig. S24. (a) LSV curves and (b) Nyquist plots of Nb₂O_{5-x} and Au-Nb₂O_{5-x} in Arsaturated 1.0 M KOH solution; cyclic voltammograms of (c) Nb₂O_{5-x} and (d) Au-Nb₂O_{5-x} in Ar-saturated 1.0 M KOH solution at different scan rates from 60 to 180 mV s⁻¹; (e) dependence of capacitive current density on scan rates of Nb₂O_{5-x} and Au-Nb₂O_{5-x} x.

Fig. S25. Thermogravimetric curves of Nb₂O₅ and Nb₂O_{5-x} under N₂ atmosphere.

As shown in Fig. S25, the thermogravimetric analysis experiment was carried out under N_2 atmosphere. During the temperature increasing from room temperature to 800°C, the mass loss of Nb₂O₅ occurred due to its deoxidation, while the mass of Nb₂O_{5-x} remains unchanged. These results can explain the source of the strong TPD signal of Nb₂O₅.