Supplementary Information for

Enhanced the solar-to-hydrogen efficiency for photocatalytic water splitting based on polarized heterostructure: The role of intrinsic dipole in heterostructures

Xinyi Liu,^a Peng Cheng, ^a Xiuhai Zhang,^b Tao Shen,^a Jia Liu,^a Ji-Chang Ren,^a Hongqiang Wang,^{b*} Shuang Li^{a*} and Wei Liu^{a*}

^aNano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
^bState Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China

*Email: <u>lishuang@njust.edu.cn</u>, hongqiang.wang@nwpu.edu.cn, and weiliu@njust.edu.cn

Materials	<i>a</i> ₀ (Å)	h(Å)	<i>d</i> _{M-M} (Å)	d _{M-Se} (Å)	d _{M-S} (Å)	d _{M-Te} (Å)	E _g (eV)
In ₂ SSe	4.00	5.24	2.77	2.66	2.58	_	1.61
In ₂ STe	4.15	5.32	2.77	-	2.62	2.83	1.08
In ₂ SeTe	4.21	5.45	2.77	2.71	_	2.84	1.19
Ga ₂ SSe	3.72	4.72	2.46	2.47	2.39	_	2.08
Ga₂STe	3.90	4.78	2.45	-	2.45	2.64	0.99
Ga₂SeTe	3.98	4.88	2.45	2.55	_	2.66	1.29
ln_2S_3	3.94	6.44	_	_	_	_	1.94
In_2Se_3	4.11	6.82	_	-	_	_	1.37
In_2Te_3	4.41	7.36	_	_	_	_	1.12
Ga_2S_3	3.65	5.98	_	-	-	_	2.56
Ga_2Se_3	3.84	6.36	_	_	_	_	1.64
Ga ₂ Te ₃	4.16	6.93	_	-	_	_	0.72

Table S1 Calculated lattice parameters a_0 and total heights h, bond lengths, and band gap E_g at the PBE level for M₂XY and E_g at the HSE level M₂X₃ monolayers. These values agree well with previous reports.¹⁻⁴

Fig. S1. The partial charge analysis of the conduction band minimum (CBM) and valence band maximum (VBM) of M_2XY and M_2X_3 monolayers.

Fig. S2. Top and side views of configurations for vertical M_2XY and M_2X_3 heterostructures with four possible stacking modes.

Table S2 Interlayer distance d_1 and binding energy E_b of vertical M₂XY and M₂X₃ heterostructures in different types of stacking. The binding energy is calculated by the following formula: $E_b = (E_{hetero} - E_{L1} - E_{L2})$, where the E_{hetero} , E_{L1} and E_{L2} represent the total energy of heterostructures, and the individual component of single M₂XY and M₂X₃ layers in unit cell, respectively.

Stacking models	AA		AA'		AB		AB'	
	d _I (Å)	E _b (eV)	<i>d</i> _l (Å)	E _b (eV)	d _I (Å)	E _b (eV)	d _I (Å)	E _b (eV)
SIn ₂ Te-SGa ₂ Te	3.85	-0.17	3.17	-0.25	3.24	-0.24	3.18	-0.25
SGa ₂ Te-SIn ₂ Te	3.89	-0.16	3.11	-0.25	3.24	-0.24	3.16	-0.25
SIn ₂ Te-SeIn ₂ Te	3.97	-0.16	3.11	-0.27	3.21	-0.26	3.12	-0.26
Seln ₂ Te-Sln ₂ Te	3.92	-0.16	3.27	-0.27	3.26	-0.27	3.10	-0.28
In_2Te_3 -Ga $_2Te_3$	3.58	-0.12	3.35	-0.29	3.33	-0.28	3.58	-0.13
Ga_2Te_3 - In_2Te_3	3.57	-0.11	3.33	-0.29	3.37	-0.28	3.57	-0.11
In ₂ Se ₃ -In ₂ Te ₃	3.53	-0.10	3.43	-0.28	3.43	-0.28	3.56	-0.11
In_2Te_3 - In_2Se_3	3.51	-0.09	3.43	-0.28	3.39	-0.27	3.56	-0.11
Ga_2Te_3 - In_2Se_3	3.54	-0.11	3.33	-0.29	3.31	-0.29	3.53	-0.11
In ₂ Se ₃ -Ga ₂ Te ₃	3.54	-0.13	3.32	-0.32	3.29	-0.31	3.53	-0.12

	SIn ₂ Te-SGa ₂ Te	SGa ₂ Te-SIn ₂ Te	SIn ₂ Te-SeIn ₂ Te	Seln ₂ Te-Sln ₂ Te	In ₂ Te ₃ -Ga ₂ Te ₃
Q (e)	0.017	0.016	0.017	0.015	0.014
E _{in} (eV)	0.52	0.32	0.45	0.36	0.37
	Ga ₂ Te ₃ -In ₂ Te ₃	In_2Se_3 - In_2Te_3	In_2Te_3 - In_2Se_3	Ga_2Te_3 - In_2Se_3	In_2Se_3 -Ga $_2Te_3$
Q (e)	0.016	0.012	0.023	0.025	0.012
E _{in} (eV)	0.37	0.025	0.58	0.65	0.039

Table S3 T The charge transfer Q and internal electric filed E_{in} of vertical M₂XY and M₂X₃ heterostructures in different types of stacking.

Surface	In ₂ STe	In ₂ SeTe	Ga ₂ STe	In_2Se_3	In_2Te_3	Ga ₂ Te ₃	InS
up	6.02	4.88	5.72	6.24	5.28	5.32	6.22
down	4.64	4.46	4.96	5.02	4.22	4.43	6.22

Table S4 The work functions WF (eV) for up and down surfaces of M_2XY , M_2X_3 and InS monolayers.

Fig. S3. The band alignments of the type-II junction mode for heterostructures $SIn_2Te-Seln_2Te$ (a) and $In_2Se_3-Ga_2Te_3$ (b), respectively. The black arrows represent the charge transfer and e–h recombination process. The plane-average charge density difference $\Delta \rho$ for heterostructures $SIn_2Te-Seln_2Te$ (c) and $In_2Se_3-Ga_2Te_3$ (d). The positive and negative value in $\Delta \rho$ indicate electron accumulation and depletion, respectively. The red (green) colour corresponds to the charge accumulation (depletion). The E_{in} represents the built-in electric field at the interface of heterostructures.

Fig. S4. (a) Plane-average charge density difference $\Delta \rho$ of In_2Se_3/SnP_3 heterostructure. The positive and negative value in $\Delta \rho$ indicate electron accumulation and depletion, respectively. The red (green) colour corresponds to the charge accumulation (depletion). (b) The schematic plot of vacuum level for In_2Se_3/SnP_3 heterostructure. It is noted that there is a big difference $\Delta \Phi$ for the vacuum level between the SnP₃ surface and In_2Se_3 surface (larger than the intrinsic $\Delta \Phi$ for In_2Se_3 layer), which means that there is an internal electric field pointing to In_2Se_3 layer from SnP₃ layer at the interface of the heterostructure.

