Supporting Information

FeF₃·0.33H₂O@Carbon Nanosheets with Honeycomb Architectures for High-capacity Lithium-ion Cathode Storage by Enhanced

Pseudocapacitance

Liguo Zhang, a Litao Yu, a Oi Lun Li, *a Si Young Choi, c Ghuzanfar Saeed, b and Kwang Ho Kim, *ab

^aDepartment of Materials Science and Engineering, Pusan national University, 2 Busandaehak-ro
63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
^bGlobal Frontier R&D Center for Hybrid Interface Materials, Pusan national University, 2
Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
^cDepartment of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea

*E-mail: helenali@pusan.ac.kr

*E-mail: kwhokim@pusan.ac.kr

Experimental Details

Synthesis of the bare FeF₃·0.33H₂O

The FeF₃·0.33H₂O was synthesized using hydrogen fluoride (HF) as a fluorine source, and iron (III) nitrate nonahydrate (Fe(NO₃)₃·9H₂O) as an iron source. In the typical synthesis of composite materials by hydrothermal reaction, 1.0 mL HF was added to a 100 mL Teflon beaker containing 50 mL isopropanol. Under magnetic stirring, add 2.02 g Fe(NO₃)₃·9H₂O to the above solution to dissolve it. After stirring for 20 minutes, the above solution in the Teflon autoclave was put in an oven and was heated for 12 hours at 150 °C. It was then cooled at room temperature to obtain an off-white precipitate. The precipitate was washed with ethanol and dried under vacuum at 80 °C for 12 hours. After naturally cooling to room temperature, the bare FeF₃·0.33H₂O was gained.

Synthesis of CNS Carbon (Carbon Nanosheets Carbon)

For obtaining CNS Carbon (Carbon Nanosheets Carbon), the Fe₃C@CNS was immersed in HCl (10%) solution for 5h. After ultrasonic treatment, The precipitated particles were washed with centrifugation, and dried in the oven.

Synthesis of LCNS (Pre-lithiated Carbon Nanosheets)

Pre-lithiation process of **CNS** electrode was carried out by galvanostatic discharging in coin cell (CR2416) which assembled with CNS working electrode and lithium countering electrode. The pre-lithiation process was terminated once the capacity of the cell reached 0.01V.

Fig. S1. (a) Thermogravimetric analysis (TGA) of $FeF_3 \cdot 0.33H_2O$ @CNS and bare $FeF_3 \cdot 0.33H_2O$; (b) SEM images of uniform Fe_3C @C nanosheets; (c) XRD pattern of Fe_3C @C nanosheets being consistent with Fe_3C ; (d) XRD pattern of the CNS Carbon obtained by etching Fe_3C @CNS with HCl solution, being consistent with Carbon.

Fig. S2. (a) Galvanostatic charging/ discharging curves comparative of the FeF₃·0.33H₂O@CNS electrode and the bare FeF₃·0.33H₂O electrode; (b) Relationship between current /(scan rate)^{1/2} and (scan rate)^{1/2} of FeF₃·0.33H₂O@CNS electrode for calculating constants k_1 and k_2 at different potentials; (c) CV curves at di erent scan rates of the bare FeF₃·0.33H₂O electrode; (d) Relationship between Log (current density) and Log(scan rate) of the bare FeF₃·0.33H₂O electrode for calculating b value.

Fig. S3. SEM characterizations of the bare $FeF_3 \cdot 0.33H_2O$

Fig. S4. (a) Nyquist plots measured for the FeF₃·0.33H₂O@CNS electrode and bare FeF₃·0.33H₂O electrode (Inset: the simplified equivalent circuit model); (b) The rate performance curves of the CNS Carbon cathode with a voltage range of 2.0- 3.2 V (vs. Li/Li⁺), which show that the cathode capacity of pure carbon CNS under high cathode voltage is almost negligible. The electrode of the CNS Carbon cathode can be damaged when charged at a voltage higher than 3.2V; (c) The rate performance curves of the CNS Carbon anode with a voltage range of 0.01- 3.0 V (vs. Li/Li⁺); (d) Cyclic voltammograms of the CNS Carbon electrode scanned with a voltage range of 0.01–3.5 V (vs. Li/Li⁺) at a scan rate of 0.2 mV s⁻¹.

Fig. S5. Li-ion supercapacitance characterization of the $FeF_3 \cdot 0.33H_2O@CNS//Li$: The galvanostatic charging/ discharging profiles from 2 to 4.2V at high current densities (a) and low current densities (b). the results shows that the $FeF_3 \cdot 0.33H_2O@CNS$ exhibit excellent electrochemical performance at low current densities, but exhibit bad performance at low current densities. supercapacitors are used for high current and high power, therefore the $FeF_3 \cdot 0.33H_2O@CNS$ is not suitable for supercapacitors.

Electrode	Voltage range (V)	Current density (mA g ⁻¹)	Discharge capacity (mAh g ⁻¹) /(cycle no.)	Ref.
FeF ₃ ·0.33H ₂ O/ Graphene & CNTs	1.5- 4.5	162 (1C)	200/(2 nd)-146/(100 th)	[1]
FeF ₃ ·0.33H ₂ O/ 3D rGO	2.0-4.5	200 (1C)	202/(1 st)- 167/(50 th)	[2]
FeF ₃ ·0.33H ₂ O	2.0-4.5	200 (1C)	145/(1 st)- 130/(200 th)	[3]
FeF ₃ ·0.33H ₂ O/ N- doped 3D Porous Carbon	2.0- 4.5	200 (1C)	163/(1 st)- 146.7/(200 th)	[4]
FeF ₃ ·0.33H ₂ O/ rGO	1.7- 4.5	100 (0.5C)	175/(1 st)- 171.5/(100 th)	[5]
FeF ₃ ·0.33H ₂ O/ Graphene & CNTs	1.8- 4.5	45 (0.2C)	225/(1 st)- 222.8/(50 th)	[6]
Hollow Spheres FeF ₃ ·0.33H ₂ O	1.5- 4.2	712 (3C)	169/(1st)- 163.4/(40th)	[7]
FeF ₃ ·0.33H ₂ O with active site exposed	2.0-4.5	200 (1C)	163/(1st)- 146.7/(30th)	[8]
FeF ₃ ·0.33H ₂ O@C	2.0- 4.5	200 (1C)	178/(2 nd)- 172.9/(200 th)	This work

Table S1. The comparison of discharge capacities and fading rates/ cycle of the previously reported FeF_3 electrodes.

References

[1] Q. Zhang, Y. Zhang, Y. Yin, L. Fan, N. Zhang, J. Power Sources, 447 (2020) 227303.

[2] S. Chen, J. Lin, Q. Shi, Z. Cai, L. Cao, L. Zhu, Z. Yuan, J. Electrochem. Soc., 167 (2020) 080506.

[3] H. Zhou, H. Sun, T. Wang, Y. Gao, J. Ding, Z. Xu, J. Tang, M. Jia, J. Yang, J. Zhu, Inorg. Chem., 58 (2019) 6765-6771.

[4] Q. Zhang, X. Wu, S. Gong, L. Fan, N. Zhang, ChemistrySelect, 4 (2019) 10334-10339.

[5] J. Zhai, Z. Lei, D. Rooney, K. Sun, Electrochimica Acta, 313 (2019) 497-504.

[6] L. Lu, S. Li, J. Li, L. Lan, Y. Lu, S. Xu, S. Huang, C. Pan, F. Zhao, Nanoscale Res. Lett., 14 (2019) 100.

[7] J. Lin, L. Zhu, S. Chen, Q. Li, Z. He, Z. Cai, L. Cao, Z. Yuan, J. Liu, J. Electrochem. Soc., 166 (2019) A2074-A2082.

[8] G. Chen, X. Zhou, Y. Bai, Y. Yuan, Y. Li, M. Chen, L. Ma, G. Tan, J. Hu, Z. Wang, F. Wu, C. Wu, J. Lu, Nano Energy, 56 (2019) 884-892.