Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information:

New strategies for economically feasible CO₂ electroreduction using a porous membrane in zero-gap configuration

Woong Hee Lee ^{1, 2†}, Kyeongsu Kim ^{1†}, Chulwan Lim ^{1, 3}, Young-Jin Ko ¹,

Yun Jeong Hwang², Byoung Koun Min^{1,5}, Ung Lee^{1,4,5*}, and Hyung-Suk Oh^{1,4,6*}

- ¹ Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
- ² Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
- ³ Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- ⁴ Division of Energy and Environmental Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
- ⁵ KU·KIST Graduate School of Energy and Environment, Korea University, 145 Anam-ro, Seongbukgu, Seoul 02841, Republic of Korea
- ⁶ KHU-KIST Department of Conversing Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea

[†] The authors have contributed equally to this work.

*Corresponding Authors

E-mail: ulee@kist.re.kr (U. Lee), hyung-suk.oh@kist.re.kr (H. -S. Oh)

Tel.: +82 (0)2 958 5292

Fax: +82 (0)2 958 5890

Simulation and technoeconomic calculation methods

• Unit production rate of CO:

$$\dot{n}_{CO} = \frac{CD \times FE_{CO}}{F \times z_{CO}} \text{ [mol s^{-1}cm^{-2}]}$$

where CD, FE_{CO} , F, and z_{CO} , indicate current density, Faraday efficiency of CO, Faraday constant, and electron number of the CO producing reaction.

• Unit production rate of H₂:

$$\dot{\mathbf{n}}_{H_2} = \frac{\mathrm{CD} \times \mathrm{FE}_{H_2}}{\mathrm{F} \times \mathbf{z}_{H_2}} \quad [\mathrm{mol} \ \mathrm{s}^{-1} \mathrm{cm}^{-2}]$$

where FE_{H_2} and z_{H_2} indicate Faraday efficiency of H₂ and electron number of the H₂ producing reaction.

• Required electrolyzer cell area A_{cell}:

$$A_{cell} = \frac{\dot{n}_{CO_2}^{in} \times X}{\dot{n}_{CO}} \quad [m^2]$$

where $\dot{n}_{CO_2}^{in}$ and X indicate molar flowrate of CO₂ into electrolyzer and one-pass CO₂ conversion.

• Base case for carbon capture process

The base carbon capture process that can captures 90% of inlet CO_2 was simulated via Aspen Plus. The CO_2 mass flowrate for the base case capture process was set to 12440 kg/h and the corresponding equipment cost was calculated as \$11.2 M. Cost calculation methods was referred from Seider et al.¹

• Cost calculation for carbon capture

The equipment installation cost of carbon capture process was assumed to be obtained from the equation of CO_2 mass flowrate as below:

$$C_{cap} = C_{base} \times \left(\frac{\dot{m}_{CO_2}}{\dot{m}_{CO_2, base}}\right)^{0.6}$$

where C_{base} , \dot{m}_{CO_2} , and $\dot{m}_{CO_2, base}$ indicate the equipment cost for carbon capture process, the inlet CO₂ mass flowrate into capture process, and the inlet CO₂ mass flowrate into capture process for the base case.

The operating cost of carbon capture process was calculated using the amount of 50 psig steam required for regeneration of MEA.

$$C_{cap, op} = \dot{m}_{CO_2} \times G_{re} \times C_{steam, 50psig} \times T_{op}$$
 [\$ year⁻¹]

where G_{re} , $C_{steam,50psig}$, and T_{op} indicate the unit MEA regeneration energy per ton CO₂, 50 psig steam purchase cost, and the process operating hours in a year ($T_{op} = 8,000$ hours).

pital cost calculation					
Total bare-module	= Total bare-module costs for				
investment	equipment + costs for computers, and				
(TBM)	software (\$20,000).				
Total direct permanent investment (DPI)	= Cost of site preparation (10% of TBM) + TBM				
Total depreciable capital (TDC)	= Cost of contingencies and contractor's fee (15% of DPI) + DPI				
Total permanent investment (TPI)	= Cost of land (2% of TDC) + Cost of plant startup (2% of TDC) + TDC				

• Capital cost calculation

* The bare-module costs for equipment were calculated via Guthrie's method² and the required data was obtained using Aspen Plus simulation

Cost Factor	Annual Cost (\$)		
Operations (labor-related) (Op)			
Direct wages and benefits (DW&B)	\$2,800,000		
Direct salaries and benefits	15% of DW&B		
Operating supplies and services	6% of DW&B		
Technical assistance to manufacturing	\$200,000		
Control laboratory	\$216,667		
Maintenance (Ma)			
Wages and benefits (MW&B)	3.5% of TDC		
Salaries and benefits	25% of MW&B		
Materials and services	100% of MW&B		
Maintenance overhead	5% of MW&B		
Operating overhead			
General plant overhead	7.1% of <i>Ma+Op</i> -SW&B		
Mechanical department services	2.4% of <i>Ma</i> +Op		
	SW&B		
	5.9% of <i>Ma+Op</i>		
Employee relations department	SW&B		
Duciness convises	7.4% of <i>Ma</i> +Op		
Business services	SW&B		
Property taxes and insurance	2% of TDC		
Depreciation			
Direct plant	8% of (TDC-1.18alloc)		
Allocated plant	6% of 1.18alloc		
General Expenses			
Selling (or transfer) expense	3% (1%) of sales		
Direct research	4.8% of sales		
Allocated research	0.5% of sales		
Administrative expense	2.0% of sales		
Management incentive compensation	1.25% of sales		

• Operating cost calculation

* The sales (CO sales) and utility costs (electricity, steam, and refrigerants) were calculated based on the results of Aspen Plus simulation

• Cash flow

Cash flow analysis was performed with 15 years plant life, 2 years plant construction period, 5 years of class life MACRS (Modified Accelerated Cost Recovery System) depreciation, 15% nominal interest rate, and 38.9% income tax rate to calculate net present value (NPV).

Parameter	Unit	1 st scenario		2 nd scenario	
		РМ	AEM	PM	AEM
Unit membrane cost	\$ m ⁻²	316 ± 10%	3,167 ± 10%	316 ± 10%	3,167 ± 10%
CO ₂ crossover ratio	-	0~10%	0	0~10%	0
Current density	mA cm ⁻²	500		100 ~ 2000	
CO Faraday Efficiency		0.9		0.5 ~ 0.99	
One-pass CO ₂ conversion		0.1		0.01 ~ 0.5	
Cell voltage	V	3		1.3 ~ 3.5	
Unit electricity cost	\$ kWh ⁻¹	0.06		0.06 ~ 0.1	
Unit regeneration energy	GJ tonCO ₂ ⁻¹	3 ~ 5			
Operating years	years	15			
Membrane replacement period	years	7			

Table S1. Parameters for sensitivity analysis

Parameters	Unit	Value
Utility cost		
Steam, 450 psig ¹	\$ kg ⁻¹	0.0145
Steam, 150 psig ¹	\$ kg ⁻¹	0.0105
Steam, 50 psig ¹	\$ kg ⁻¹	0.0066
Process water ¹	\$ m ⁻³	0.2
KHCO ₃ ³	\$ kg ⁻¹	1.38
Refrigeration, -150°F ¹	\$ GJ ⁻¹	12.60
Refrigeration, -90°F ¹	\$ GJ ⁻¹	10.30
Refrigeration, -30°F ¹	\$ GJ-1	7.90
Refrigeration, 10°F ¹	\$ GJ ⁻¹	5.50
Chilled water, 0°F1	\$ GJ ⁻¹	4.00
Cooling water ¹	\$ m ⁻³	0.02
Direct wages and benefit (DW&B) ¹	\$ operator ⁻¹ hr ⁻¹	35
Number of workers	-	10
Tech assistance to manufacturing ¹	\$ shift operator ⁻¹ yr ⁻¹	60,000
Control laboratory ¹	\$ shift operator ⁻¹ yr ⁻¹	65,000
Operating hour	hr yr ⁻¹	8,000
Catalyst prices		
Ag^4	$\$ kg ⁻¹	490
Ir ⁴	\$ kg ⁻¹	46,940

 Table S2. Parameters for technoeconomic analysis

Economic factors

year	15
year	2
%	38.9
%	15
-	5-year class
	year year % %

Figure S1. (a) Cell voltage and current density curve, (b) impedance and (c) Faraday efficiency (FE) of commercial ZERFON PERLTM porous membrane applied zero-gap electrolyzer for CO_2RR . Anode: 1 mg cm⁻² IrO₂ on Pt-coated Ti mesh. Cathode: 0.5 mg cm⁻² Ag black on carbon paper. Anolyte: 0.5 M KHCO₃.

Figure S2. Impedance of porous membrane (PM) applied zero-gap CO_2RR device using Ag electrode with different pore size of PM. Anode: 1 mg cm⁻² IrO₂ on Pt-coated Ti mesh. Cathode: 0.5 mg cm⁻² Ag black on carbon paper. PM: polyvinylidene difluoride (PVDF) porous membrane. Anolyte: 0.5 M KHCO₃.

Figure S3. Faraday efficiency of zero-gap electrolyzer for CO_2RR using PM with different pore sizes. Anode: 1 mg cm⁻² IrO₂ on Pt-coated Ti mesh. Cathode: 0.5 mg cm⁻² Ag black on carbon paper. PM: polyvinylidene difluoride (PVDF) porous membrane. Anolyte: 0.5 M KHCO₃.

Figure S4. (a) Cell voltage and current density curve, and (b) Faraday efficiency of PM applied zero-gap electrolyzer for CO_2RR . Anode: 1 mg cm⁻² IrO₂ on Pt-coated Ti mesh. Cathode: 0.5 mg cm⁻² Ag black on carbon paper. PM: polyvinylidene difluoride (PVDF) porous membrane, 450 nm pore size, 125 µm thickness. Anolyte: 0.1 M and 0.5 M KHCO₃.

Figure S5. Cell voltage and current density curves of a zero-gap electrolyzer with hydrophilic and hydrophobic PM applied. Anode: 1 mg cm⁻² IrO₂ on Pt-coated Ti mesh. Cathode: 0.5 mg cm⁻² Ag black on carbon paper. PM: hydrophilic polyvinylidene difluoride (PVDF) porous membrane and hydrophobic polytetrafluoroethylene (PTFE) porous membrane. Anolyte: 0.5 M KHCO₃.

Figure S6. Faraday efficiency of a zero-gap electrolyzer with hydrophilic and hydrophobic PM applied. Anode: 1 mg cm⁻² IrO₂ on Pt-coated Ti mesh. Cathode: 0.5 mg cm⁻² Ag black on carbon paper. PM: hydrophilic polyvinylidene difluoride (PVDF) porous membrane and hydrophobic polytetrafluoroethylene (PTFE) porous membrane. Anolyte: 0.5 M KHCO₃.

Figure S7. Water contact angle (WCA) photos of (a) porous PVDF membrane (pore size: 220 nm) and (b) porous PTFE membrane (pore size: 200 nm).

Figure S8. Durability test for the CO₂ electrolyzer employing AEM conducted for 100 h at a current density of 100 mA cm⁻². Separator: AEM (anion exchange membrane, Dioxide materials, X37-50). Anode electrode: 1 mg cm⁻² IrO₂ on Pt-coated Ti mesh. Cathode electrode: 0.5 mg cm⁻² Ag black on carbon paper (Sigracet 39BB). Anolyte: 0.5 M KHCO₃.

Figure S9. XPS survey spectra of Ag electrodes using PM- and AEM-applied CO_2 electrolyzer after stability test. PM (porous membrane): PVDF, 450 nm pore size, 125 μ m thickness.

Figure S10. SEM, EDS elemental mapping, and cross section images of PM after CO_2RR stability test for 100 h. PM (porous membrane): PVDF, 450 nm pore size, 125 μ m thickness.

Figure S11. Faraday efficiency of zero-gap electrolyzer for CO_2RR using PM with different pore sizes. Anode: 1 mg cm⁻² IrO₂ on Pt-coated Ti mesh. Cathode: 0.5 mg cm⁻² Cu black on carbon paper. PM: polyvinylidene difluoride (PVDF) porous membrane. Anolyte: 0.5 M KHCO₃.

Figure S12. Faraday efficiency of zero-gap electrolyzer for CO_2RR using hydrophobic PM. Anode: 1 mg cm⁻² IrO₂ on Pt-coated Ti mesh. Cathode: 0.5 mg cm⁻² Cu black on carbon paper. PM: polytetrafluoroethylene (PTFE) porous membrane, 200 nm pore size, 125 μ m thickness. Anolyte: 0.5 M KHCO₃.

Figure S13. O₂ Faraday efficiency (FE) and CO₂/O₂ ratio at the anode outlet during CO₂ reduction reaction (CO₂RR) in PM-applied zero-gap electrolyzer using 1 M KCl anolyte. Anode: 1 mg cm⁻² IrO₂ on Pt-coated Ti mesh. Cathode: 0.5 mg cm⁻² Cu black on carbon paper. PM: polyvinylidene difluoride (PVDF) porous membrane, 450 nm pore size, 125 μ m thickness.

Figure S14. Faraday efficiency of PM-applied zero-gap electrolyzer for CO_2RR using Ag electrode with 1 M KHCO₃, 1 M KCl and 1 M PBS anolyte. Anode: 1 mg cm⁻² IrO₂ on Pt-coated Ti mesh. PM: polyvinylidene difluoride (PVDF) porous membrane, 450 nm pore size, 125 µm thickness.

- Cheap, good physical properties of membrane
- Stackable zero-gap structure (MEA-type)
- Scalable physical property •
- Controllable of cathode reaction environmental .
- Controllable of membrane properties .
- Good chemical stability •

Disadvantage of PM-applied electrolyzer

- Potential loss in the high current region •
- Gas/ion crossover possibility .
- Liquid products crossover to anode side
- Resistance depends on the electrolyte concentrate

Figure S15. Advantages and disadvantages of zero-gap electrolyzer with PM applied for CO₂RR through comparison with flow cell and polymer exchange membrane (PEM) applied electrolyzers.

Figure S16. Mechanical strength of polymer exchange membrane (PEM) and porous membrane in ethanol. (a) Anion exchange membrane (AEM), (b) porous PVDF membrane (PM), 450 nm pore size, 125 µm thickness.

.

Reference

- 1 Seider, W. D., Seader, J. D. & Lewin, D. R. *PRODUCT & PROCESS DESIGN PRINCIPLES: SYNTHESIS, ANALYSIS AND EVALUATION, (With CD).* (John Wiley & Sons, 2009).
- 2 Biegler LT, Grossmann IE, Westerberg AW. Systematic methods for chemical process design. 1997
- 3 Alibaba, Potassium Bicarbonate Price, Wholesale & Suppliers (accessed 15, March, 2019); https://www.alibaba.com/showroom/potassium-bicarbonate-price.html.
- Zoelle, A. *et al.* Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3. Report No. DOE/NETL-2015/1723 United States 10.2172/1480987 NETL English, Medium: ED (; NETL, 2015).
- 5 InfoMine, Mining Intelligence and Technology (accessed 22, January, 2019); http://www.infomine.com.