Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Scheme S1 Molecular structure of PEI.

Fig. S1 Schematic showing for the fabrication process of Au@Rh MNs.

Fig. S2 (a) SEM image, (b and c) TEM images and (d) HRTEM image and the lattice fringes of the corresponding areas. The inset in (d) is the SAED pattern. (e) HAADF-STEM image, compositional line profiles and corresponding element mappings of Au and Rh for Au@Rh MNs.

Fig. S3 SEM-EDX spectrum of Au@Rh MNs.

Fig. S4 SEM images of Au@Rh MNs obtained by replacing AA with (a) NaBH₄, (b) HCOOH, (c) NaH₂PO₂ and (d) C₂H₅OH.

Fig. S5 SEM images of Au@Rh MNs obtained (a) without any surfactant and (b) with PS_{18000} -*b*-PEO₇₅₀₀.

Fig. S6 SEM images of (a) Rh MNs and (b) Au NPs.

Fig. S7 TEM-EDX spectrum of Au@Rh@PEI MNs.

Fig. S8 XPS survey spectrum of Au@Rh@PEI MNs.

Fig. S9 Metal mass-normalized LSV curves of different catalysts for HER in 0.5 M H₂SO₄.

Fig. S10 EIS spectra of various catalysts in (a) $0.5 \text{ M H}_2\text{SO}_4$, (b) 1 M KOH and (c) 1 M PBS. The applied potentials in $0.5 \text{ M H}_2\text{SO}_4$, 1 M KOH and 1 M PBS are -0.073 V (*vs.* RHE), -0.276 V (*vs.* RHE) and -0.136 V (*vs.* RHE), respectively.

Fig. S11 (a) SEM image and (b) TEM images of Au@Rh@PEI MNs in neutral media after 24 h *V-t* test.

Fig. S12 (a) XRD pattern, high-resolution (b) N 1s, (c) Rh 3d and (d) Au 4f XPS spectra of Au@Rh@PEI MNs in neutral media after HER stability testing.

Fig. S13 CV curves at various scan rates of (a) Au@Rh@PEI MNs, (b) Au@Rh MNs and (c) Rh MNs with potential ranges from 0.646 to 0.746 V (*vs.* RHE) in 1 M PBS solution. (d) The corresponding capacitive current densities of different catalysts at 0.696 V (*vs.* RHE).

Table S1. HER performance comparison in acidic media between the Au@Rh@PEI MNs and some other reported electrocatalysts.

Electrocatalysts	Electrolytes	Electrode substrate	Overpotential (a) 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Ref.
Au@Rh@PEI MNs	0.5 M H ₂ SO ₄	glassy carbon electrode (GCE loading ~ 0.05 mg cm ⁻²)	30	30	This work
RhCoB aerogels	0.5 M H ₂ SO ₄	GCE (loading $\sim 0.085 \text{ mg cm}^{-2}$	12	30.7	1
boron-doped RhFe alloy	0.5 M H ₂ SO ₄	rotating disk electrode (RDE: loading ~ 0.51 mg cm ⁻²)	25	32	2
Rh ₂ S ₃ hexagonal nanoprisms	0.5 M H ₂ SO ₄	RDE (loading $\sim 0.153 \text{ mg cm}^{-2}$)	117	44	3
Rh ₂ P/XC-72	0.5 M H ₂ SO ₄	GCE (loading $\sim 0.0225 \text{ mg cm}^{-2}$)	14	31.7	4
Rh-MoS ₂	0.5 M H ₂ SO ₄	GCE (loading $\sim 0.309 \text{ mg cm}^{-2}$)	47	24	5
Rh _x P/NPC	0.5 M H ₂ SO ₄	GCE (loading $\sim 0.0017 \text{ mg cm}^{-2}$)	19	36	6
Rh Hollow nanoparticle/C	0.5 M H ₂ SO ₄	GCE (loading $\sim 0.018 \text{ mg cm}^{-2}$)	28.1	24	7
Rh-Ag-Si ternary composites	0.5 M H ₂ SO ₄	(RDE: loading $\sim 0.140 \text{ mg cm}^{-2}$)	120	51	8
Rh-Au-Si nanocomposite	0.5 M H ₂ SO ₄	GCE (loading $\sim 0.255 \text{ mg cm}^{-2}$)	60	24	9
rGO/CoP-Rh catalysts	0.5 M H ₂ SO ₄	GCE (loading $\sim 0.218 \text{ mg cm}^{-2}$)	72	43	10
PtRh DNAs	0.5 M H ₂ SO ₄	GCE (loading $\sim 0.225 \text{ mg cm}^{-2}$)	27	30	11
Rh ₅₀ Ru ₅₀ @UiO ₋₆₆ - NH ₂	0.5 M H ₂ SO ₄	GCE (loading $\sim 0.343 \text{ mg cm}^{-2}$)	77	79	12

Table S2. HER performance comparison in alkaline media between the Au@Rh@PEI MNs and some other reported electrocatalysts.

Electrocatalyst s	Electrolytes	Electrode substrate	Overpotential @ 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Ref.
Au@Rh@PEI MNs	1М КОН	GCE (loading ~ 0.05 mg cm ⁻²)	29	31	This work
RhCoB aerogel	1М КОН	GCE (loading ~0.085 mg cm ⁻²)	43	40.5	1
Rh ₂ P/XC-72	1М КОН	GCE (loading $\sim 0.0225 \text{ mg cm}^{-2}$)	30	50	4
PtRh DNAs	1М КОН	GCE (loading ~0.225 mg cm ⁻²)	28	47	11
Rh ₅₀ Ru ₅₀ @UiO ₋ 66-NH ₂	1М КОН	GCE (loading ~0.343 mg cm ⁻²)	176	112	12
RuP ₂ @NPC	1М КОН	GCE (loading ~1.0 mg cm ⁻²)	52	69	13
Rh NSs/CNTs	1М КОН	GCE (loading ~0.015 mg cm ⁻²)	43	107	14
IrRh NAs	1М КОН	GCE (loading ~0.281 mg cm ⁻²)	35	48.4	15
Rh-Rh ₂ O ₃ - NPs/C	1М КОН	GCE (loading ~0.028 mg cm ⁻²)	63	70	16
MoP ₂ NS/CC	1М КОН	CC (loading $\sim 7.8 \text{ mg cm}^{-2}$)	85	70	17
Mn-CoP/Ti	1М КОН	Ti (loading $\sim 5.61 \text{ mg cm}^{-2}$)	76	52	18
NiRu@N-C	1М КОН	GCE (loading $\sim 0.273 \text{ mg cm}^{-2}$)	50	36	19

Table S3. HER performance comparison in neutral media between the Au@Rh@PEI MNs and some other reported electrocatalysts.

Electrocatalyst s	Electrolytes	Electrode substrate	Overpotential (a) 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Ref.
Au@Rh@PEI	1 M PBS	GCE (loading ~ 0.05 mg cm ⁻²)	24	39	This work
RhCoB aerogel	1 M PBS	GCE (loading $\sim 0.085 \text{ mg cm}^{-2}$)	113	149.1	1
Rh ₂ P-based electrocatalyst	1 M PBS	GCE (loading ~0.0225 mg cm ⁻²)	38	46	4
PtRh DNAs	1 M PBS	GCE (loading $\sim 0.225 \text{ mg cm}^{-2}$)	23	87	11
Rh ₅₀ Ru ₅₀ @UiO- 66-NH ₂	1 M PBS	GCE (loading $\sim 0.343 \text{ mg cm}^{-2}$)	111	93.4	12
RuP ₂ @NPC	1 M PBS	GCE (loading $\sim 1.0 \text{ mg cm}^{-2}$)	57	87	13
OsP ₂ @NPC	1 M PBS	GCE (loading $\sim 0.43 \text{ mg cm}^{-2}$)	54	82	20
Ni-Co-P-H microflowers	1 M PBS	GCE (loading $\sim 0.4 \text{ mg cm}^{-2}$)	157	84	21
CoP-400	1 M PBS	GCE (loading $\sim 0.43 \text{ mg cm}^{-2}$)	161	81	22
Ru@Co-SAs/N- C	1 M PBS	GCE (loading $\sim 0.285 \text{ mg cm}^{-2}$)	55	82	23
RhCu nanotubes	0.1 M PBS	GCE (loading $\sim 0.24 \text{ mg cm}^{-2}$)	57	95	24

References

- 1. K. Deng, T. Ren, Y. Xu, S. Liu, Z. Dai, Z. Wang, X. Li, L. Wang and H. Wang, *J. Mater. Chem.A*, 2020, **8**, 5595-5600.
- L. Zhang, J. Lu, S. Yin, L. Luo, S. Jing, A. Brouzgou, J. Chen, P. K. Shen and P. Tsiakaras, *Appl. Catal.*, *B*, 2018, 230, 58-64.
- D. Yoon, B. Seo, J. Lee, K. S. Nam, B. Kim, S. Park, H. Baik, S. Hoon Joo and K. Lee, *Energy Environ. Sci.*, 2016, 9, 850-856.
- 4. F. Yang, Y. Zhao, Y. Du, Y. Chen, G. Cheng, S. Chen and W. Luo, *Adv. Energy Mater.*, 2018, **8**, 1703489.
- 5. Y. Cheng, S. Lu, F. Liao, L. Liu, Y. Li and M. Shao, Adv. Funct. Mater., 2017, 27, 1700359.
- 6. Q. Qin, H. Jang, L. Chen, G. Nam, X. Liu and J. Cho, Adv. Energy Mater., 2018, 8, 1801478.
- 7. J. Du, X. Wang, C. Li, X.-Y. Liu, L. Gu and H.-P. Liang, Electrochim. Acta, 2018, 282, 853-859.
- B. Jiang, Y. Sun, F. Liao, W. Shen, H. Lin, H. Wang and M. Shao, J. Mater. Chem.A, 2017, 5, 1623-1628.
- B. Jiang, L. Yang, F. Liao, M. Sheng, H. Zhao, H. Lin and M. Shao, *Nano Res.*, 2017, 10, 1749-1755.
- H. Zheng, X. Huang, H. Gao, W. Dong, G. Lu, X. Chen and G. Wang, *J. Energy Chem.*, 2019, 34, 72-79.
- 11. Y. Liu, X. Li, Q. Zhang, W. Li, Y. Xie, H. Liu, L. Shang, Z. Liu, Z. Chen, L. Gu, Z. Tang, T. Zhang and S. Lu, *Angew. Chem., Int. Ed. Engl.*, 2020, **59**, 1718-1726.
- 12. Z. Ding, K. Wang, Z. Mai, G. He, Z. Liu and Z. Tang, *Int. J. Hydrogen Energy*, 2019, **44**, 24680-24689.
- 13. Z. Pu, I. S. Amiinu, Z. Kou, W. Li and S. Mu, Angew. Chem., Int. Ed., 2017, 56, 11559-11564.
- 14. N. Zhang, Q. Shao, Y. Pi, J. Guo and X. Huang, Chem. Mater., 2017, 29, 5009-5015.
- 15. C. Li, Y. Xu, S. Liu, S. Yin, H. Yu, Z. Wang, X. Li, L. Wang and H. Wang, *ACS Sustain. Chem. Eng.*, 2019, **7**, 15747-15754.
- 16. M. K. Kundu, R. Mishra, T. Bhowmik and S. Barman, J. Mater. Chem. A, 2018, 6, 23531-23541.
- 17. W. Zhu, C. Tang, D. Liu, J. Wang, A. M. Asiri and X. Sun, J. Mater. Chem.A, 2016, 4, 7169-7173.
- 18. T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A. M. Asiri, X. Sun and L. Chen, *ACS Catal.*, 2017, 7, 98-102.
- Y. Xu, S. Yin, C. Li, K. Deng, H. Xue, X. Li, H. Wang and L. Wang, J. Mater. Chem.A, 2018, 6, 1376-1381.
- 20. L. Fang, Y. Wang, X. Yang, H. Zhang and Y. Wang, J Catal, 2019, 370, 404-411.
- 21. X. Liu, S. Deng, D. Xiao, M. Gong, J. Liang, T. Zhao, T. Shen and D. Wang, *ACS Appl. Mater. Interfaces*, 2019, **11**, 42233-42242.
- 22. H. Li, X. Zhao, H. Liu, S. Chen, X. Yang, C. Lv, H. Zhang, X. She and D. Yang, *small*, 2018, 14, e1802824.
- 23. S. Yuan, Z. Pu, H. Zhou, J. Yu, I. S. Amiinu, J. Zhu, Q. Liang, J. Yang, D. He, Z. Hu, G. Van Tendeloo and S. Mu, *Nano Energy*, 2019, **59**, 472-480.
- 24. D. Cao, H. Xu and D. Cheng, Adv. Energy Mater., 2020, 10, 1903038.