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Supplementary Figure 1: (a) RHEED pattern after growth. (b) Atomic force microscopy after UHV-transfer to the 

AFM chamber. (c)  RHEED pattern after electrochemical characterization. The intensity of the electron beam was 

identical and all settings as similar to panel a as possible. The loss in intensity of the diffraction spots compared to 

the background intensity indicates a slight loss of surface crystallinity. (d) Atomic force microscopy after 

electrochemical characterization. 

 
Supplementary Figure 2: (a) Cyclic voltammetry of a 50 nm Pt layer at 500 mV/s. The redox features are labeled 

according to Bard and Faulkner.19 Hc/Ha: formation/oxidation of adsorbed hydrogen. Oa/Oc: formation/reduction of 

adsorbed oxygen or a platinum oxide layer. (b) Pt 4f XPS after deposition and after potential holds at different 

potentials as indicated in panel a. First, the film was oxidized at 1.88 V vs. RHE, then it was reduced 

at -0.11 V vs. RHE, followed by reoxidation at 1.08 and 1.38 V vs. RHE, respectively. (c) representative XPS 

fitting of the Pt 4f level. (d) Relative intensity of the Pt oxide peaks as a function of applied potential.  



 

 

 

 

 

 
 

Supplementary Figure 3: (a) O1s spectrum of a LaNiO3 film in O2 at 300 °C. The surface is clean except for a small 

contamination peak often observed for perovskite oxides (doi/10.1021/acs.chemmater.9b05151) (b) Top panel: 

Increase of the peak corresponding to the O 1sCO3 and contaminations during cooling down in CO2. Based on their 

binding energy, these peaks could not be separated unambiguously. Middle and bottom panel: Intensity ratio of the 

C 1sCO3 peak and the total Ni 3p intensity (same data as shown in Fig. 5 of the main text).  (c) O1s spectrum of the 

same film after cooling down to room temperature in CO2.  

 
Supplementary Figure 4: (a) Cyclic voltammetry of the same films as in Figure 2 of the main text and current 

normalization: The current ratio was obtained by dividing the data from the air-exposed sample by the clean-

transfer data. The ratio is fairly constant at ~70 to 80 %.  
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