Supporting Information

Universal Strategy towards 3D Printable Nanomaterial Inks for Superior Cellular High-Loading Battery Electrodes

Xiaocong Tian, ^{ab} Teng Wang, ^{ac} Hui Ma, ^a Kang Tang, ^{ab} Shuen Hou, ^a Hongyun Jin *^a and Guozhong Cao ^d

^a Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.

^b Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China.

^c The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China.

^d Department of Materials Science & Engineering University of Washington, WA 98195, USA.

*Corresponding Author.

E-mail: jinhongyun@cug.edu.cn

Figure S1. XRD patterns of (a) LFP-based and (b) LTO-based 3D-printed battery electrodes.

Figure S2. CV curves of 3D-printed LFP-rGO cathode.

Figure S3 GCD profiles of 3D printed LFP-rGO electrodes with different layers: (a) 1 layer (b) 2 layers and (c) 4 layers

Figure S4. CV curves of 3D-printed LTO-rGO anode.

Figure S5 GCD profiles of 3D printed LTO-rGO electrodes with different layers: (a) 1 layer (b) 2 layers and (c) 4 layers