Supporting Information

In-situ construction of active interfaces towards improved high-rate

performance of CoSe₂

Bo Wang^{a,b}, Xiaowei Miao^a, Huilong Dong^a, Xue Ma^a, Jiajun Wu^a, Yafei Cheng^{a*},

Hongbo Geng^a*, Cheng Chao Li^b*

^aSchool of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.

^bSchool of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.

*Corresponding authors. E-mail: yafeicheng1990@163.com; hbgeng@gdut.edu.cn; licc@gdut.edu.cn

Fig. S1 The microstructure and morphology of Co-CNS. (a) XRD pattern; (b) TEM image; (c) SEM image, (d) HAADF-STEM image and the EDX mappings.

Fig. S2 The microstructure and morphology of pure CoSe₂. (a) XRD pattern; (b) TEM image; (c) SEM image, (d) HAADF-STEM image and the EDX mappings.

Fig. S3 (a) The XPS survey spectrum and (b) N_2 adsorption/desorption isotherms of CoSe₂-CNS.

Fig. S4 (a) The GCD curves at 0.2 A g^{-1} and (b) rate capacities at current densities of pure CoSe₂.

Fig. S5 The GCD curves at 10 A g^{-1} of (a) CoSe₂-CNS and (b) pure CoSe₂.

Fig. S6 Comparative cycling performance of the $CoSe_2$ -CNS electrode at 10 A g⁻¹ with different mass loadings (the cells were initially activated at 0.2 A g⁻¹ for 20 cycles).

Fig. S7 Separation of the capacitive (shaded region) and diffusion currents at different scan rates.

Fig. S8 The equivalent circuits for the $CoSe_2$ -CNS and pure $CoSe_2$ electrodes. R_1 is the ohmic resistance, R_2 is the charge transfer resistance, CPE_1 is the constant phase element, and W_1 is the Warburg impedance. The fitted result shows that the R_2 value of the $CoSe_2$ -CNS electrode is 9 Ω , which was much lower than that of the pure $CoSe_2$ electrode (13 Ω), indicating a much faster charge transport kinetics for $CoSe_2$ -CNS nanosheets.

Fig. S9 (a) XRD and (b) SEM image of the NVPOF.

Fig. S10 The cycle performance at 0.2 A g^{-1} of NVPOF cathode.

Fig. S11 The GCD curves of $CoSe_2$ -CNS//NVPOF full cell at different current densities.