Electronic Supporting Information

Osmotic Pressure-Induced Pocket–Like Spheres with Fe Single–Atom Sites for Oxygen Reduction Reaction

Kuang Liang,^a Chengzong Yuan,^b Xiao Zhou, ^b Zhengkun Yang, ^b Junyi Du, ^b Yifan Ye,^c Jingjing Luo,^a Cai Chen, ^b Junfa Zhu,^c Chenliang Su^{*a} and Yuen Wu^{*b,d}

^aAddress here. International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen 518060, China, Email: chmsuc@szu.edu.cn

^bHefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China, E-mail: yuenwu@ustc.edu.cn

^cNational Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China ^dDalian National Laboratory for Clean Energy, Dalian 116023, China

Additional Figures and Tables

Fig. S1 Scheme of the formation of the Fe/NC(SS) catalyst.

Fig. S2 Fe content by ICP–MS measurements of Fe/NC(SS) and Fe/NC(PS), comparing with their precursors of Fe/SS resin and Fe/PS resin.

Fig. S3 Morphology changes with the gradually increasing usage of $FeCl_3$ (200 mg/ml). When the usage of $FeCl_3$ solution increases from 5 ul to 100 ul, the pocket sizes also grow.

Fig. S4 FITR spectra analysis of the precursors: HS resin, Fe/SS resin, and Fe/PS resin. The insert displays the zoom–in curves in the orange range.

Fig. S5 TEM (a) and SEM (b) images of Fe/NC(PS) from the different viewing angles.

Fig. S6 SEM (a) and TEM (b) images of HS, SEM (c) and TEM (d) images of Fe/NC(SS).

Fig. S7 The pore distribution of HS, Fe/NC(SS), and Fe/NC(PS).

Fig. S8 XRD patterns of HS, Fe/NC(SS), and Fe/NC(PS).

Fig. S9 Raman spectra of HS, Fe/NC(SS), and Fe/NC(PS).

Fig. S10 High–resolution XPS spectrum for the N 1s in Fe/NC(PS).

Fig. S11 High-resolution XPS spectrum for the Fe 2p in Fe/NC(PS).

Fig. S12 (a) FT–EXAFS fitting curve of Fe/NC(PS) sample. Inset: atomic structure model of Fe/NC(PS), Fe (red), N (blue), and C (gray). (b) The corresponding EXAFS and k space fitting curves of Fe/NC(PS).

Fig. S13 The corresponding EXAFS fitting curves of Fe foil.

Fig. S14 CV curves in N_2/O_2 -saturated 0.1 M KOH solution at a scan rate of 50 mV s⁻¹.

Fig. S15 Non-Faradic double layer capacitance measurements. a-c, CV curves at different scan rates for commercial HS, Fe/NC(SS), and Fe/NC(PS), respectively. d, Capacitive $\Delta j = ja - jc$ as a function of the scan rate of catalysts.

Fig. S16 LSV curves of different catalysts at varying rotation rates. (a) Fe/NC(PS), (b) HS, (c) Fe/NC(SS) and (d) Pt/C.

Fig. S17 Electron transfer number (n) and H₂O₂ yield of the Fe/NC(PS) and the commercial Pt/C.

Fig. 18 ORR LSV curves for commercial Pt/C before and after 10000 cycles.

Fig. 19 TEM images of Fe/NC(PS) after 10000 cycles.

Fig. S20 LSV curves of Fe/NC(PS)–5, Fe/NC(PS)–20, Fe/NC(PS)–50 (also marked Fe/NC(PS)) and Fe/NC(PS)–100 in O_2 -saturated 0.1 M KOH.

Fig. 21 XRD curves of Fe/NC(PS)–5, Fe/NC(PS)–20, and Fe/NC(PS)–100.

Fig. 22 ICP results of Fe/NC(PS)–5, Fe/NC(PS)–20, and Fe/NC(PS)–100.

Fig. 23 TEM images of Fe/NC(PS)–5, Fe/NC(PS)–20, and Fe/NC(PS)–100.

Fig. S24 (a) Structure of Fe_{NP}/C and the adsorption configurations of the ORR intermediates on the surface. (b) Free energy diagrams of ORR on Fe_{NP}/C .

Fig. S25 Adsorption energies of the ORR intermediates on different catalytic sites.

Fig. S26 Nyquist Curves of Zn-air batteries with different catalyst.

Fig. S27 Discharge curves of the zinc-air battery assembled with Fe/NC(PS) at current densities of 2, 5, 10, 20, 50, 2 mA cm⁻².

Fig. S28 The cycling curves of pure RuO2 as cathode for rechargeable Zn-air battery.

Fig. S29 The cycling curves at around 1h, 50 h and 150 h of rechargeable Zn–air battery with $Fe/NC(PS)-RuO_2$ and Zn foil as electrodes.

sample	Scattering pair	CN	R(Å)	σ ² (10⁻³ Ų)	ΔE₀(eV)	R factor
Fe/NC(PS)	Fe–N	4.4	2.12	3.4	16	0.07
Fe foil	Fe–Fe	6	2.45	4.5	5.14	0.007

Table S1 Structural parameters extracted from the Fe K–edge EXAFS fitting.

Catalysts	Half– wave potential	Onset potential (V vs RHE)	Electron transfer numbers	Reference
Fe/NC(PS)	0.919	1.03	4.02	This work
LDH@ZIF-67-800	0.83	0.94	4	Adv. Mater. 2016,28, 2337
Fe–N–CNFs	0.85	0.93	3.95	Angew. Chem. Int. Ed. 2015, 54, 8179.
Fe–N–SCCFs	0.883	1.03	3.9	Nano Lett. 2017, 17, 2003.
(Zn,Co)/NSC	0.893	1.07	3.9	Nano Energy, 2019, 58, 277
Co-N-C	0.881	0.982		Angew.Chem. Int. Ed. 2016, 55
Fe−N₄ SAs/NPC	0.885	0.972	3.84	Angew.Chem.Int. Ed. 2018, 57,
Fe SAs/N–G	0.92		3.95	Adv. Mater. 2019, 31,
Fe/OES	0.85	1		Angew. Chem. Int. Ed. 2020, 59
Fe–N _x –C	0.91	1.05	3.9	Adv. Funct. Mater. 2019, 29
Cu@Fe-N-C	0.896	1.01	4.0	Adv. Funct. Mater. 2018, 28, 1802596
Fe ₃ C–Co/NC	0.885		3.9	Adv. Funct. Mater. 2019, 29
	0.85	0.96	3.98	Small 2018, 14, 1704319
Co1-N3PS/HC	0.92	1.0	3.99	Angew. Chem. Int. Ed. 2020, 59,2–12
Co ISAs/GHSs	0.82		3.98	Inorg. Chem. Front., 2020, 7, 3475– 3481

Table S2. The Comparison of ORR performance of non–precious M/NC catalysts from the recent literature and this work (electrode 1600 rpm in 0.1 M KOH medium).

Catalysts	power density mW/cm ²	Specific capacity mAh/g _(Zn)	Reference
Fe/NC(PS)	238	872	This work
CuS/NiS ₂	172		Adv. Funct. Mater. 2017, 27, 1703779
FeNi@N–GR	85	765	Adv. Funct. Mater. 2018, 28, 1706928
NGM–Co	152	749	Adv. Mater. 2017, 29, 1703185
MnO/Co/PGC	172	873	Adv. Mater. 2019, 31, 1902339
Co/Co-N-C	132		Adv. Mater. 2019, 31, 1901666
NOGB	110		Adv. Energy Mater. 2019, 9, 1803867
Fe-N-C	202	800	Adv. Energy Mater. 2019, 9, 1803046
Fe/N–G	156	510	Energy Technol. 2019, 7, 1900123
Fe–NMG	218		J. Power Sources 2018, 375, 214e221
CoO _x /CoN _y @CN _z	204	1008.6	Appl. Catal. B–Environ. 2020, 279, 119407
CoSA/N,S-HCS	173	781	Adv. Energy Mater. 2020, 2002896
CoP/NP-HPC	186		J. Mater. Chem. A 2020, 8, 19043– 19049
Pt-SCFP/C	122	790	Adv. Energy Mater. 2020, 10, 1903271
Ni/NiO nanosheet	225	853	Nano-Micro Lett. 2020, 12, 68
Fe−Co₄N@N−C	105	806	Appl. Catal. B–Environ. 2019, 256, 117893

Table 33. Companyons of the reproducts) catalyst with other catalysts applied in 21–an battern
