Supporting Information

Selective Hydrogenation of Acetylene to Ethylene on Anatase TiO₂ through First

Principles Studies

Qiang Wan,^{1,}∥ Yang Chen,^{2,}∥ Shulan Zhou,³ Jian Lin,^{2,*} Sen Lin^{1,*}

¹State Key Laboratory of Photocatalysis on Energy and Environment, College of

Chemistry, Fuzhou University, Fuzhou 350002, China

²CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian

Institute of Chemical Physics, Chinese Academy of Science, 116023, China.

³School of Chemical Engineering, Shandong University of Technology, Zibo 255049,

China

 $^{^{\}prime\prime}$ These authors contributed equally.

*Corresponding author. Email: <u>slin@fzu.edu.cn (S.L)</u> and <u>jianlin@dicp.ac.cn (J.L.)</u>

Figure S1. Charge density of pristine and defective $TiO_2(101)$ surfaces colored electrostatic potential value with Bader charges indicated.

Figure S2. Charge density of pristine and defective $TiO_2(001)$ surfaces colored by electrostatic potential with Bader charges indicated.

Figure S3. Structures of IS, TS, and FS for the heterolytic H_2 dissociation following FLP mechanism. Color scheme: O, red; Ti, grey; H, white.

Figure S4. Structures of IS, TS, and FS for H_2 dissociation following non-FLP mechanism. Color scheme: O, red; Ti, grey; H, white.

Figure S5. Conversion of hydride to hydroxyl, in which the energy barrier (eV)/reaction energy (eV) were labeled. Color scheme: O, red; Ti, grey; H, white.

Figure S6. Diagrams of acetylene hydrogenation above the FLP of O_{v-3-3} via C_2H_3 radical-assistant mechanism. Color scheme: O, red; Ti, grey; H, white; C, dark grey.

Figure S7. Acetylene hydrogenation processes above other FLPs of O_{v-1-2} , O_{v-2-1} , and O_{v-2-2} on anatase TiO₂(101) surface. Color scheme: O, red; Ti, grey; H, white; C, dark grey.

Figure S8. Acetylene hydrogenation processes above the FLPs of O_{v-4-2} , and O_{v-5-1} in anatase TiO₂(001) surface. Color scheme: O, red; Ti, grey; H, white; C, dark grey.

Figure S9. Relationships of the second hydrogenation energy barrier with the ICOHP value of O–H bond

Figure S10. H₂-TPR profile for the anatase TiO₂ sample. The consumption amount of H₂ is 786.5 μ mol g⁻¹.

Figure S11. HRTEM images of the (a) anatase TiO_2 and (b) TiO_2 -H600 samples.

Figure S12. In situ DRIFT spectra of C_2H_2 adsorption on TiO₂-fresh and TiO₂-H600 at the steady state and then purging with He.

	FLP	d /Å	<i>Q/e</i> (TS)		E /aV
	sites	$a_{\rm H-H}/{\rm A}$	H(O)	H(Ti)	$E_{\rm a}/{\rm ev}$
101	O _{v-1-1}	1.01	0.39	-0.37	0.81
	O _{v-1-2}	0.99	0.48	-0.51	0.35
	O _{v-1-3}	1.07	0.35	-0.32	0.73
	O _{v-2-1}	0.91	0.21	-0.22	0.51
	O _{v-2-2}	1.03	0.39	-0.50	0.65
	O _{v-3-3}	1.01	0.40	-0.42	0.27
001	O _{v-4-1}	1.04	0.40	-0.45	0.74
	O _{v-4-2}	0.98	0.37	-0.39	0.49
	O _{v-5-1}	0.87	0.28	-0.33	0.23

Table S1. Calculated distance $(d_{H-H}/Å)$ between H–H and charge (Q) of H^{δ -} and H^{δ +} at the TS of H₂ dissociation as well as the corresponding energy barrier (E_a) above FLPs on (101) and (001) surfaces.

	ICOHP			
	Ti-H		О-Н	
O _{v-1-1}	-3.00		-7.68	
O _{v-1-2}	-3.08		-8.04	
O _{v-1-3}	-3.04		-8.18	
O _{v-2-1}	-3.54		-7.86	
O _{v-2-2}	-3.48		-8.14	
O _{v-3-3}	-2.26		-7.94	
O _{v-4-1}	-2.46		-8.12	
O _{v-4-2}	-2.46		-8.08	
O _{v-5-1}	-2.82		-7.96	

Table S2. ICOHP values of Ti-H and O-H bonds for FS of H_2 dissociation above various FLPs.