Supplementary information

Diffusion encouraged core-shell heterostructure Co₃Sn₂@SnO₂ anode towards emerging dual ion battery with high energy density

Tejaswi Tanaji Salunkhe,^a Abhijit Nanaso Kadam,^a, Weldejewergis Gebrewahid Kidanu,^{a,b}, Sang-Wha Lee,^a Tuan Loi Nguyen,^{*c,d} Il Tae Kim^{*a}

^a Department of Chemical and Biological Engineering, Gachon University, Seongnam-si,

Gyeonggi-do 13120, South Korea

^b Department of Chemical Engineering, Ethiopian Institute of Technology-Mekelle (EIT-M),

Mekelle University, Mekelle, Tigray, 231, Ethiopia

^c Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City

700000, Vietnam

^dFaculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000,

Vietnam

*Correspondence

E-mail: itkim@gachon.ac.kr (I.T. Kim) and nguyentuanloi@duytan.edu.vn (T.L. Nguyen)

Material characterization

The crystal structure of as-prepared samples was assessed by X-ray diffraction (XRD) using Rigaku D/max 2200 (Japan) tool with monochromatic Cu Kα radiation. Their surface morphology was observed by using scanning electron microscopy (SEM; Hitachi S-4700). Further details of morphology and structure of as-synthesized products was characterized by transmission electron microscopy (TEM) and high-resolution (HRTEM) by means of a Talos F200X instrument (Thermo Fisher Scientific). The energy dispersive X-ray spectroscopy (EDS) using the Talos F200X instrument and X-ray photoelectron spectroscopy (XPS, Kratos AXIS Nova) were used to investigate elemental composition and chemical state. Fourier-transform infrared (FTIR) spectra were recorded to understand the bonding nature as well as surface functional groups using a Perkin-Elmer spectrometer (Spectrum BX-II). The specific surface area of the as-prepared product was recorded using the Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption technique (ASAP 2020) and a Monora500i (ANDOR) micro-Raman spectrometer was used to record Raman spectra.

Electrochemical measurements

Working electrode films were fabricated by dissolving the active material, carbon black, and a poly (acrylic acid) binder at a weight ratio of 70:15:15 in ethanol and depositing the solution on copper foils. The deposited electrodes were dehydrated for 3 h in an air oven at 60 °C and subsequently for 12 h in a vacuum oven at 70 °C. CR2032-type coil cells were constructed in an Ar-filled glove box (moisture and oxygen less than 0.1 ppm) using electrodes containing 1.3–1.5 mg of the active material (Co₃Sn₂@SnO₂), lithium foil was employed as counter electrode, and the electrolyte consisting of 1.0 M LiPF₆ in ethylene carbonate (EC) and diethylene carbonate (DEC) (1:1 v/v). A polyethylene membrane was used as the separator. Galvanostatic charge–discharge testing was conducted at a current density of 100 mA g⁻¹ and rate performance was analyzed at 100 mA g⁻¹, 500 mA g⁻¹, 1 A g⁻¹, 3 A g⁻¹, and 5 A g⁻¹ using

a battery cycler (WBCS3000, WonAtech) in the range of 0.01-2.00 V (vs. Li/Li⁺). A ZIVE MP1 station was used to record Electrochemical impedance spectroscopy (EIS) in the frequency range from 100 kHz to 0.1 Hz at the 50th and 500th discharge-charge cycles. To evaluate the diffusion coefficients of the Li⁺ towards as-synthesized electrodes, cyclic voltammetry (CV) was conducted after two cycles over scanning rates of 0.1–1.0 mV s⁻¹ in the potential window of 0.01–2 V using a ZIVE MP1 station. The expanded graphite cathode was cast on the aluminum foil with a weight ratio of the active: polyvinylidene difluoride: conduction carbon (60:30:10) and dried in a vacuum oven at 70 °C for 12 h. A LIB half-cell with EG (cathode) and Li metal (anode) was cycled at 50 mA g⁻¹ in the range of 2–5 V. The ex-situ XRD and Raman measurement were conducted for EG cathode run at 10 mA g⁻¹ for the initial cycle. LDIB CR2032-type coin cells were assembled with EG/prelithiated Co₃Sn₂@SnO₂ as the cathode/anode with 1 M LiPF₆ in EC:DEC (1:1 v/v) as the electrolyte and the capacity of the LDIB was calculated using the weight of the anode. According to previous reports, the 1 M concentration of LiPF₆ in the electrolyte is enough high to provide sufficient Li⁺ and PF₆⁻ ions for electrochemical reactions for running the dual ion battery.¹⁻⁴ It is also noted that when the electrolyte concentration increases to more than 1 M, the LiPF₆ is hard to be fully dissolved in the solvent. Therefore, 1 M concentration of LiPF₆ in the electrolyte has been used in this work.

Synthesis method of the EG

In a typical procedure, pristine graphite (1 g) and ammonium bicarbonate (8 g) were subjected to the ball milling process in a ZrO_2 bowl (80 cm³) with ZrO_2 balls (diameters of 3/8 in and 3/16 in) at a ball to- powder ratio of 20:1. Then, the container was agitated at 300 rpm for 24 h. After that, the mixture was heated in a vacuum oven at 60 °C for 20 min in a sealed vial and subsequently cooled to room temperature to ensure sufficient ammonium bicarbonateintercalated graphite. Thereafter, the intercalated graphite was put into a microwave (MW) oven (WC-A201KW, 2.450 MHz, 700 W) for 60 s. Under MW, the precursor (graphite) was reacted rapidly, accompanied by lightening. On completion of the reaction, the product was heated in a muffle furnace at 500 °C for 15 min in air without any special treatment to completely remove the undecomposed ammonium bicarbonate.

The kinetics calculations

The relation of the peak current and the scan rate,

$$i = av^{b}$$

$$\log(i) = blog(v) + \log(a)$$
(S2)

Where,

i is measured current,

a is adjustment parameter,

b is indicative of the charge storage kinetics in the electrodes,

b can be calculated from the slope of the linearly fitted log(i)-log(v) plot, while *a* can be calculated by the intercept of the linear plot. When *b* = 1, the Li-ion process can be entirely dominated by the capacitive electrochemical process, whereas if *b* = 0.5, the route is a completely diffusion-controlled reaction. If *b* lies between 0.5 and 1, then both pseudo capacitive and diffusion processes exist together for Li-ion storage.

$$i(V) = k_1 v + k_2 v^{1/2}$$
(S3)

$$i(V)/v^{\frac{1}{2}} = k_1 v^{\frac{1}{2}} + k_2$$
 (S4)

Where,

 $k_l v$ represents for the surface capacitive of current

$k_2 v^{1/2}$ denotes the diffusion controlled contribution of the current

The intercept and slope of the linear plot of the $i/v^{1/2}$ vs $v^{1/2}$ at a specific potential determine the k_2 and k_1 values, respectively.

Fig. S1. (a) XRD patterns of as-prepared initial samples (Co₃Sn₂@Sn(OH)_x) annealed at different annealing times at 200 °C. (b) the XRD pattern annealed at 500 °C for 6h.

Fig. S2. (a) HRTEM image; (b) Enlarged HRTEM at SnO₂ shell; and (c) SAED pattern scanned at the edge of the shell for Co₃Sn₂@SnO₂-6h sample annealed at 500 °C for 6h.

HRTEM measurement for observing different lattice fringes of the core and shell of annealed sample at 500 °C for 6 h was performed (Sample discussed in **Fig. S1b**). As expected, the HRTEM image clearly shows two distinct phases comprised of Co_3Sn_2 core and SnO_2 surface layer (**Fig. S2(a**)). Importantly, the crystallinity of SnO_2 shell could be observed, which shows lattice fringes with d-spacing value of 0.33 nm attributing to (110) plane of SnO_2 (**Fig. S2(b**)). In addition, the SAED pattern of SnO_2 shell discloses the bright spots corresponding to the (110) and (101) planes of SnO_2 phase (**Fig. S2(c**)). These findings clearly support the formation of amorphous SnO_2 layer at lower temperature (200 °C).

Fig. S3. High-resolution O1s spectra of Co₃Sn₂@SnO₂-6h and Co₃Sn₂@SnO₂-12h CSHs.

Fig. S4. SEM images of the $Co_3Sn_2@SnO_2-6h$ CSHs (a-b) and $Co_3Sn_2@SnO_2-12h$ (c-d).

Fig. S5. Low magnification EDS maps of $Co_3Sn_2@SnO_2-6h$ CSHs (a) and $Co_3Sn_2@SnO_2-12h$ CSHs (b).

Fig. S6. (a) Cyclic voltammograms of $Co_3Sn_2@SnO_2$ -6h electrode and (b) Cyclic performance of $Co_3Sn_2@SnO_2$ -6h in the potential window of 0.01 to 3.00 V.

As discussed in the main text, the reversible reactions of Sn and SnO₂ with Li⁺ ions occur below 2 V (**Eq. S5**, **Eq. S6**), while the reformation of Co₃Sn₂ phase happens at 2.10 V (**Eq. S7**).⁵ Therefore, when cycling between 0.01 to 3.00 V, Co₃Sn₂@SnO₂-6h electrode exhibited high capacity values because of the reformation of Co₃Sn₂ at high voltage zone when comparing the cycling results from between 0.01 to 2.00 V. When cycling between 0.01 to 2.00 V, the reformation reactions of Co₃Sn₂ (**Eq. S7**) only happened partially, leading to lower capacity.

$$SnO_2 + 4Li^+ + 4e^- \leftrightarrow Sn + 2Li_2O \tag{S5}$$

$$Sn + 4.4Li^+ + 4.4e^- \leftrightarrow Li_{4.4}Sn \tag{S6}$$

$$Co_3Sn_2 + xLi^+ + xe^- \leftrightarrow 2Li_xSn + 3Co$$
 (S7)

Fig. S7. *Ex-situ* XPS survey spectrum of EG cathode after fully charged condition.

Table S1. BET surface area, pore diameter and pore volume of $Co_3Sn_2@SnO_2$ -6h and $Co_3Sn_2@SnO_2$ -12h CSHs.

Samula	Surface area	Average pore	Pore volume	
Sample	$(m^2 g^{-1})$	diameter (nm)	$(cm^{3}g^{-1})$	
Co ₃ Sn ₂ @SnO ₂ -6h CSHs	35.33	6.49	0.0643	
Co ₃ Sn ₂ @SnO ₂ -12h CSHs	15.37	20.35	0.0787	

Sample	$R_{e}\left(\Omega ight)$	$R_{s}(\Omega)$	$R_{ct}(\Omega)$
Co ₃ Sn ₂ @SnO ₂ -6h CSHs -50	2.2	6.1	47.1
Co ₃ Sn ₂ @SnO ₂ -6 h CSHs- 500	2.9	18.7	23.5
Co ₃ Sn ₂ @SnO ₂ -12 h CSHs-50	3.9	8.5	31.7
Co ₃ Sn ₂ @SnO ₂ -12 h CSHs- 500	8.9	9.5	17.5

 $\textbf{Table S2.} \ \text{EIS simulated results of } Co_3Sn_2@SnO_2-6h \ \text{and} \ Co_3Sn_2@SnO_2-12h \ \text{CSHs.} \\$

Ex-situ XRD state	New peak positions	Intensity of new peak	Intensity of peak at (002)	I _{new} /I (002)
Pristine	26.5	26899.74	122097.73	0.22
Charged to 2.2 V	25.8	54977.53	324677.06	0.17
Charged to 3.0 V	25.8	60411.4	280574.28	0.22
Charged to 3.56 V	25.6	46141.53	114549.28	0.40
Charged to 4.5 V	25.6	57313.96	43298.23	1.32
Charged to 5.0 V	25.6	28873.21	15211.317	1.90
Discharged to 4.45 V	25.6	49069.08	27181.97	1.81
Discharged to 4.05 V	25.7	25671.86	14425.0211	1.78
Discharged to 2.57 V	25.83	46062.9	114392.025	0.40
Discharged to 2.0 V	25.83	50067.39	127068.239	0.39

 Table S3. The intensity ratio of the ex-situ XRD results at different charge/discharge states.

Ex-situ Raman states	Intensity of peak at (1605 cm ⁻¹) (I _G)	Intensity of peak at (1633 cm ⁻¹) (I _{G2})	I _{G2} /I _G
Pristine	34806.79	20469.81	0.59
Charged to 2.2 V	41748.10	32051.39	0.77
Charged to 3.0 V	44634.23	37999.16	0.85
Charged to 3.56 V	41562.76	38580.46	0.93
Charged to 4.5 V	49601.94	46928.53	0.95
Charged to 5.0 V	51121.17	51049.57	1.0
Discharged to 4.45 V	31706.26	31052.23	0.99
Discharged to 4.05 V	46530.47	40577.28	0.87
Discharged to 2.57 V	49534.54	36827.44	0.74
Discharged to 2.0 V	42822.80	30208.09	0.71

Table S4. The intensity ratio (I_G/I_{G2}) of the ex-situ Raman results at different charge/discharge states.

Table S5. Performance comparison of this work and reported works for DIBs.

DIB Structure	Reversible capacity (mAh g ⁻¹)	Current density (mA g ⁻¹)	Cycle number	Estimated energy density (Wh kg ⁻¹)	Ref.
Graphite LiPF ₆ FEC-EMC Graphite	60	50	50	108	6
Li LiFTFSIPyr ₁₄ FTFSI Graphite	92	50	500	220	7
Si-compound 1M LiBF ₄ -PC Graphite	80	100	100	52	8
TiO ₂ 1M, LiPF ₆ - EC-DMC Graphite (1.5-3.7 V)	44	100	50	36	1
MoO ₃ 1M , LiPF ₆ - EC-DMC Graphite (1.5 3.5 V)	81	100	200	77	2
Al 4M , LiPF ₆ - EMC (2% VC) Graphite (3-5 V)	100	200	200	220	9
WS ₂ 1M, LiPF ₆ EC:EMC Graphite (0-4 V)	47	100	30	108	10
MnO 4M , LiPF ₆ EMC:VC Graphite (1.5-5 V)	95	186	300	326	11
Li 4M , LiPF ₆ - EMC:VC (LiNo ₃) Graphite (3.4-5 V)	69	400	1000	243	12
Co ₃ Sn ₂ @SnO ₂ 1M LiPF ₆ - EC: DEC EG	90.0	300	200	334.5	This work

Cycle	Current density (A g ⁻¹)	Working voltage (V)	Charge capacity (mAh g ⁻¹)	Discharge capacity (mAh g ⁻¹)	CE (%)
1^{st}	0.1	3.71	645.0	185.0	28.91
$7^{ ext{th}}$	0.1	3.66	244.3	140.9	61.59
8 th	0.2	3.65	1746	112.8	83.91
13 th	0.3	3.66	106.9	91.8	91.06
18 th	0.5	3.68	81.0	71.3	95.64
23 th	0.7	3.70	66.3	60.5	97.12
28 th	1	3.67	54.6	49.5	98.00
33 th	2	3.65	50.3	49.5	99.81
38 th	3	3.60	30.2	30.0	99.33
43 th	0.1	-	138.3	107.6	77.8

Table S6. The rate capability results of the DIBs.

References

- 1. A. K. Thapa, G. Park, H. Nakamura, T. Ishihara, N. Moriyama, T. Kawamura, H. Wang and M. Yoshio, *Electrochimica acta*, 2010, **55**, 7305-7309.
- N. Gunawardhana, G.-J. Park, N. Dimov, A. K. Thapa, H. Nakamura, H. Wang, T. Ishihara and M. Yoshio, Journal of Power Sources, 2011, 196, 7886-7890.
- S. Bellani, F. Wang, G. Longoni, L. Najafi, R. Oropesa-Nunez, A. E. Del Rio Castillo, M. Prato, X. Zhuang, V. Pellegrini and X. Feng, *Nano letters*, 2018, 18, 7155-7164.
- 4. J. H. Kim, N. P. Pieczonka and L. Yang, ChemPhysChem, 2014, 15, 1940-1954.
- 5. X. Hu, G. Wang, B. Wang, X. Liu and H. Wang, Chemical Engineering Journal, 2019, 355, 986-998.
- 6. J. A. Read, A. V. Cresce, M. H. Ervin and K. Xu, Energy & Environmental Science, 2014, 7, 617-620.
- P. Meister, V. Siozios, J. Reiter, S. Klamor, S. Rothermel, O. Fromm, H.-W. Meyer, M. Winter and T. Placke, *Electrochimica Acta*, 2014, 130, 625-633.
- H. Nakano, Y. Sugiyama, T. Morishita, M. J. S. Spencer, I. K. Snook, Y. Kumai and H. Okamoto, *Journal of Materials Chemistry A*, 2014, 2, 7588-7592.
- 9. X. Zhang, Y. Tang, F. Zhang and C.-S. Lee, 2016, 6, 1502588.
- S. Bellani, F. Wang, G. Longoni, L. Najafi, R. Oropesa-Nuñez, A. E. Del Rio Castillo, M. Prato, X. Zhuang, V. Pellegrini, X. Feng and F. Bonaccorso, *Nano Letters*, 2018, 18, 7155-7164.
- 11. L.-N. Wu, S.-Y. Shen, Y. Hong, C.-H. Shen, F.-M. Han, F. Fu, X. Zhou, L. Huang and S.-G. Sun, ACS Applied Materials & Interfaces, 2019, 11.
- 12. L. N. Wu, J. Peng, Y. K. Sun, F. M. Han, Y. F. Wen, C. G. Shi, J. J. Fan, L. Huang, J. T. Li and S. G. Sun, ACS Appl Mater Interfaces, 2019, 11, 18504-18510.