Boosting Zn-Ion Adsorption in Cross-Linked N/P Co-Incorporated Porous Carbon Nanosheets for Zinc-Ion Hybrid Capacitor

Hanfang Zhang^a, Zhensheng Chen^a, Yihe Zhang^{a,*}, Zequn Ma^a, Yingge Zhang^a, Liqi Bai^a, Li Sun^{a,**}

^a Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.

Number of pages: S1-S7;

Number of figures: S1-S6;

Number of tables: S1-S4.

^{*}Corresponding author. E-mail address: zyh@cugb.edu.cn (Y. Zhang).

^{**}Corresponding author. E-mail address: sunli@cugb.edu.cn (L. Sun).

Figure captions

Figure S1. a) and b) SEM images of CNPK.

Figure S2. a) Raman spectra and b) XPS survey spectra of CK and CNPK.

Figure S3. CV curves at different scan rate of a) CK electrode and b) CNPK electrode.

c) GCD profiles of the CK electrode.

Figure S4. CV curves at different scan rate of a) CK and b) CNPK. c) GCD profiles of aqueous ZHC based on CK cathode.

Figure S5. CV curves at different scan rate of a) CNK and b) CPK, GCD profiles of aqueous ZHC based on c) CNK and d) CPK cathode, e) specific capacities at different specific currents and f) Ragone plot of the assembled ZHC based on CNK and CPK.

Figure S6. Specific capacities at different specific currents of CNPK based quasi-solid ZHC device.

Table captions

 Table S1 Pore structure parameters of CK and CNPK.

Table S2 Contents of C, O, N and P elements in CK and CNPK.

 Table S3 Electrochemical properties comparison of various ZHCs based on different cathodes.

 Table S4 Relative energy value along the reaction pathway of carbon surface with

 different kinds of N and P.

Figure S1. a) and b) SEM images of CNPK.

Figure S2. a) Raman spectra and b) XPS survey spectra of CK and CNPK.

Figure S3. CV curves at different scan rate of a) CK electrode and b) CNPK electrode.c) GCD profiles of the CK electrode.

Figure S4. CV curves at different scan rate of a) CK and b) CNPK. c) GCD profiles of aqueous ZHC based on CK cathode.

Figure S5. CV curves at different scan rate of a) CNK and b) CPK, GCD profiles of aqueous ZHC based on c) CNK and d) CPK cathode, e) specific capacities at different specific currents and f) Ragone plot of the assembled ZHC based on CNK and CPK.

Figure S6. Specific capacities at different specific currents of CNPK based quasi-solid ZHC device.

	D _{ap}	S _{BET}	S _{micro}	V _t	V _{micro}
Samples	(nm)	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$
СК	2.34	1644	1292	0.96	0.548
CNPK	2.53	2038	980	1.29	0.428

 Table S1 Pore structure parameters of CK and CNPK.

Table S2 Contents of C, O, N and P elements in CK and CNPK.

Samples	C1s (at. %)	O1s (at. %)	N1s (at. %)	P2p (at. %)
СК	95.23	4.77	-	-
СNРК	90.81	4.43	2.62	2.14

Material	Electrolyte	Voltage	С	CR	Е	Ref.
Activated	7.00	05101	121 (0.1 A g ⁻¹)	010/ offer 10000 evolor	84	12
carbon	$\Sigma n S O_4$	0.3-1.8 V	41.0 (20 A g ⁻¹)	91% alter 10000 cycles		
Activated	7,00	05151	72.1 (0.05 A g ⁻¹)	1000/ 0 10000 1	24.9	9
carbon	ZnSO ₄	0.5-1.5 V	45.0 (0.6 A g ⁻¹)	100% after 10000 cycles		
Activated		0.1.0.17	85 (0.1 A g ⁻¹)	010/ 0 00000 1	50 7	10
carbon	$Zn(CF_3SO_3)$	0-1.8 V	72.0 (1 A g ⁻¹)	91% after 20000 cycles	52.7	18
			65.4 (0.06 A g g ⁻			
ZnHCFs	ZnSO ₄	0.8-1.9 V	¹)	-	100	37
			32.3 (0.3 A g ⁻¹)			
Natural		0.1.0.14			50 (20
graphite	$Zn(OAc)_2$ /choline acetate/water	0-1.8 V	$73 (0.2 \text{ A g}^{-1})$	86% after 1000 cycles	52.6	38
porous			132.7 (0.2 A g ⁻¹)		82.36	20
carbon	gelatin/ZnSO ₄ gel	0.2-1.8 V	54.5 (4 A g ⁻¹)	87.6% after 10000 cycles		
CNPK	ZnSO ₄	0.2-1.8	103 (0.1 A g ⁻¹)	101.8% after 10000 cycles	165.4	This

 Table S3 Electrochemical properties comparison of various ZHCs based on different cathodes.

							52.0 (20 A g ⁻¹)				v	vork
C:	Specific	capacity	(mAh	g-1)	CR:	Capacity	retention	E:	Energy	density	(Wh	kg-1)

Name	*-OH+Zn ²⁺	*-OH(Zn)	*-OZn+H+
graphene	0	-1.3	2.06
Pyridine N	0	-0.21	1.16
Pyrrole N	0	-0.22	1.23
Graphite N	0	-0.19	1.09
Р-С-ОН	0	-0.16	0.78
С-Р-ОН	0	-0.33	1.28

Table S4 Relative energy value along the reaction pathway of carbon surface with

 different kinds of N and P.