Electrochemical performance and reaction mechanism investigation of V₂O₅ positive electrode material for aqueous rechargeable zinc batteries

Qiang Fu^{a,*}, Jiaqi Wang^a, Angelina Sarapulova^a, Lihua Zhu^a, Alexander Missyul^c, Edmund Welter^d, Xianlin Luo^a, Ziming Ding^{e,f}, Michael Knapp^a, Helmut Ehrenberg^{a,b}, Sonia Dsoke^{a,b} ^aInstitute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany ^bHelmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany ^cCELLS-ALBA Synchrotron, E-08290 Cerdanyola del Valles, Barcelona, Spain ^dDeutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany ^eInstitute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-

Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

^fTechnische Universität Darmstadt, 64289 Darmstadt, Germany

Corresponding author: <u>qiang.fu@kit.edu</u> (Q. Fu)

Tel: 49-721 608-41445, Fax: 49-721 608-28521.

Figure S1 Discharge-charge profiles of V₂O₅ nanowires at 200 mA g⁻¹ in 1 M ZnSO₄

Figure S2 Rietveld refinement based on the pattern of the pristine V_2O_5 (a), discharged state in the beginning of Region II with the capacity of 44 mAh g⁻¹ (10th pattern, 1.02 V) (b), first fully discharged V_2O_5 electrode at 0.3 V (36th pattern) (c), fully charged at 1.6 V(69th pattern) (d), and 2nd fully discharged V_2O_5 electrode at 0.3 V (97th pattern) (e)

Figure S3 *In operando* synchrotron diffraction of V_2O_5 during the first one and half cycles and the corresponding voltage profile at a current density of 50 mA g⁻¹

Figure S4 Images of separator from the 1^{st} discharged V_2O_5 at 0.3 V (a) and the 1^{st} charged V_2O_5 at 1.6 V (b)

Figure S5 Discharge-charge profiles of V_2O_5 in 1 M ZnSO₄ electrolyte for *in operando* XAS (50 mA g^{-1})

Figure S6 STEM-HAADF EDX mapping of O (red), S (blue), V (magenta), and Zn (green) for the 1^{st} discharged V_2O_5

Samples	Wavenumbers /	assignments
	cm ⁻¹	
	994	V-O(1) stretching mode
	700	V–O(2) stretching vibration
	528	V–O(4) stretching vibration
	484	V–O(3) bending vibration
Pristine and	405 and 284	V-O(1) stretching and bending
		vibrations
charged V ₂ O ₅	304	V–O(4) bending vibrations
	197	δ(O2-V-O2)
	145	δ(O3-V-O2)
Discharged V ₂ O ₅	1129, 967, and 610	v_3 , v_1 , v_4 of SO ₄ ²⁻ vibration in
		$ZnSO_4Zn_3(OH)_6 nH_2O$
	876 and 450	V-O and Zn-O vibration of $Zn_xV_2O_5$ and
		$Zn_3(OH)_2V_2O_7 \cdot 2H_2O$
Zn counter	440 and 566	Zn-O vibration of $Zn_{1+x}O$ on the surface
electrode		of Zn
	1129, 967, and 398	v_3 , v_1 , v_4 of SO ₄ ²⁻ vibration in the
		$ZnSO_4Zn_3(OH)_6 \cdot nH_2O$

 Table S1
 Raman vibrational wavenumbers and assignments for V2O5 and Zn electrodes