## Supporting Information

### Electrochemical formation and dissolution of an Iodine-Halide coordination solid

complex in a nano-confined space

Jaehyun Jeon,<sup>a</sup> Jiseon Hwang,<sup>a,b</sup> Jung Hoon Yang,<sup>c</sup> Jinho Chang\*a,d

<sup>a</sup> Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
<sup>b</sup> Current address: Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210 USA
<sup>c</sup> Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
<sup>d</sup> Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea

## Contents

| Detailed description for equation 4 ······ S-5                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimation of the specific cell capacitance (SC <sub>cell</sub> ), energy density (ED), and power density                                                                                                                                                                                                                                                                                                    |
| (PD) in (-)micro-C NaI(aq) with/without NaBr(aq) micro-C(+) ·······S-6                                                                                                                                                                                                                                                                                                                                       |
| Estimation of $C_{\text{ZIRB}}$ from (-)Zn 0.2 M ZnSO <sub>4</sub> + 10 mM NaI with/without 5 mM                                                                                                                                                                                                                                                                                                             |
| NaBr micro-C(+) ······S-6                                                                                                                                                                                                                                                                                                                                                                                    |
| Fig. S1 ······S-7                                                                                                                                                                                                                                                                                                                                                                                            |
| FE-SEM images of (a) micro-C and (b) PG, (c) $N_2$ ADS and DES and (d) the corresponding pore size distribution in micro-C.                                                                                                                                                                                                                                                                                  |
| Fig. S2 ······S-8                                                                                                                                                                                                                                                                                                                                                                                            |
| Potential vs. pH for iodine/H <sub>2</sub> O system in an aqueous solution at 25 °C. Reprinted from Frackowiak et al. <sup>[2]</sup> Copyright (2014) with permission from Elsevier.                                                                                                                                                                                                                         |
| Fig. S3 ······S-9                                                                                                                                                                                                                                                                                                                                                                                            |
| CVs from (a) (-)micro-C 0.1 M NaI PG(+) and (b) (-)micro-C 0.05 M NaBr PG(+) at 2 mV/s.                                                                                                                                                                                                                                                                                                                      |
| Fig. S4 ······S-10                                                                                                                                                                                                                                                                                                                                                                                           |
| The integrated area to estimate $Q_{\text{Ox}}$ and $Q_{\text{Red}}$ from CVs on a micro-C measured in (-)micro-                                                                                                                                                                                                                                                                                             |
| C 0.1 M NaI( $aq$ ) (a) without/(b) with 0.05 M NaBr( $aq$ ) micro-C(+), respectively.                                                                                                                                                                                                                                                                                                                       |
| Fig. S5 ······S-11                                                                                                                                                                                                                                                                                                                                                                                           |
| 2D axial symmetric domain of the simulation for the theoretical model.                                                                                                                                                                                                                                                                                                                                       |
| Fig. S6 ······S-12                                                                                                                                                                                                                                                                                                                                                                                           |
| (a, c) Simulated steady-state voltammograms associated with electro-oxidation of I <sup>-</sup> in a solution containing (a) I <sup>-</sup> only, and (c) I <sup>-</sup> and Br <sup>-</sup> . (b, d) Corresponding concentration profiles of each species vs. $\eta$ at the electrode surface in the voltammogram from a solution with (b) I <sup>-</sup> only and (d) I <sup>-</sup> and Br <sup>-</sup> . |
| Fig. S7 ······S-13                                                                                                                                                                                                                                                                                                                                                                                           |
| The reproducibility test of $E_{cell}$ (black), $E_+$ (red), and $E$ (blue)-profiles vs. t at 0.5 A g <sup>-1</sup> from                                                                                                                                                                                                                                                                                     |
| (a) (-)micro-C $ 0.5$ M NaI $ $ micro-C(+) and (b) (-)micro-C $ 0.5$ M NaI + 0.4 M NaBr $ $ micro-C(+).                                                                                                                                                                                                                                                                                                      |
| Fig. S8 ······S-14                                                                                                                                                                                                                                                                                                                                                                                           |
| $E_{\text{cell}}$ (black), $E_+$ (red), and $E$ (blue)-profiles as a function of t at constantly applied 0.5 A g <sup>-1</sup> to                                                                                                                                                                                                                                                                            |
| the two electrochemical cells configured as (a) micro-C 0.5 M NaI PG and (b) micro-C 0.5 M NaI + 0.4 M NaBr PG, respectively.                                                                                                                                                                                                                                                                                |
| Fig. S9 ······S-15                                                                                                                                                                                                                                                                                                                                                                                           |

(a) The charge/discharge profiles vs. t and (b)  $SC_{cell}$  at 0.5 A g<sup>-1</sup> from the symmetric cells containing 0.5 M NaI with different concentration of Br-.  $E_{cell}$  vs. t curves at different current densities from (-)micro-C|0.5 M NaI|micro-C(+) (black), (-)micro-C|0.5 M NaI + 0.4 M NaBr|micro-C(+) (blue), and (-)micro-C|0.5 M NaI + 0.4 M  $NaNO_3$ |micro-C(+) (red). Cycle stability of (-)micro-C|0.5 M NaI + 0.4 M NaBr|micro-C(+) at 4 A g<sup>-1</sup>. Fig. S12 ......S-18 Deconvoluted high-resolution Na 2s XPS spectrum from micro-C serving as the positive electrode after charging to  $E_{cell} = 1.3 \text{ V}$  at 0.5 A g<sup>-1</sup> from (-)micro-C|0.5 M NaI|micro-C(+). SEM images and corresponding EDS elemental mapping from micro-C serving as positive electrodes in (-)micro-C|0.5 M NaI|micro-C(+) cell after charging to  $E_{cell} = 1.3$  V. The micro-C were analyzed after rinsing with DI water. (a) Raman spectra and (b) a deconvoluted high-resolution I 3d XPS spectrum from micro-C serving as positive electrodes after charging to  $E_{cell} = 1.3 \text{ V}$  at 0.5 A g<sup>-1</sup> from (-)micro-C|0.5 M NaI + 0.4 M NaBr | micro-C(+).The SEM images and corresponding EDS elemental mapping from micro-C serving as positive electrodes in (-)micro-C|0.5 M NaI with 0.4 M NaBr|micro-C(+) cell after charging at 0.5 A g <sup>1</sup> to  $E_{cell} = 1.3$  V. The micro-C were analyzed after rinsing with DI water.  $E_{cell}$  vs. t curves in the ZIRB containing 10 mM NaI with (red)/ without (black) 5mM NaBr at (a)  $0.3 \text{ A g}^{-1}$  and (b)  $0.015 \text{ A g}^{-1}$ . The reproducibility test of  $E_{cell}$  vs.  $C_{ZIRB}$  curves in a model ZIRB containing 10 mM NaI with (red)/without (black) 5 mM NaBr at (a)  $0.3 \text{ A g}^{-1}$  and (b)  $0.015 \text{ A g}^{-1}$ . Fig. S18 ......S-24  $E_{\text{cell}}$  vs.  $C_{\text{ZIRB}}$  curves in model ZIRBs at various current densities from (-)Zn|0.2 M ZnSO<sub>4</sub>(aq) + 10 mM NaI(aq) |micro-C(+) (black), (-)Zn|0.2 M ZnSO<sub>4</sub>(aq) + 10 mM NaI(aq) + 5mM NaBr(aq)|micro-C(+) (blue), and (-)Zn|0.2 M ZnSO<sub>4</sub>(aq) + 10 mM NaI(aq) + 5mM  $NaNO_3(aq)$ |micro-C(+) (red), respectively.

**Table S1.**S-25Reactions and corresponding parameters for a simulation without Br<sup>-</sup>, with results displayed as<br/>simulated voltammograms and corresponding concentration profiles in Figure 2b-c and Figure<br/>S6a-b, respectively.**Table S2.**S-26Reactions and corresponding parameters for a simulation with Br<sup>-</sup>, with results are displayed as<br/>simulated voltammograms and the corresponding concentration profiles in Figure 2d-e and

Figure S6c-d, respectively.

 Table S3.
 S-28

 ED at a specific PD from the electrochemical capacitors operated in an aqueous solution with various redox active species.

 Abbreviations
 S-29

|                  | 52)    |
|------------------|--------|
| References ····· | ··S-31 |

#### **Detailed description for equation 4**

For the I<sub>2</sub>(aq)<sub>bulk</sub>/I<sup>-</sup>(aq) redox reaction in reaction S1, the half-redox potential,  $E_{I_2(aq)_{bulk}/I^-(aq)}$  can be expressed as a Nernst equation:

$$I_{2}(aq)_{bulk} + 2e^{-} \rightleftharpoons 2I^{-}(aq)$$
(S1)  
$$E_{I_{2}(aq)_{bulk}/I^{-}(aq)} = E_{I_{2}(aq)_{bulk}/I^{-}(aq)} - \frac{RT}{n_{e^{-}}F} ln\left(\frac{C_{I^{-}(aq)}}{C_{I_{2}(aq)_{bulk}}}\right)$$
(S2)

where  ${}^{n_{e^{-}}}$  is the number of electrons in the redox reaction, which is 2. The half-redox potential of the I<sub>2</sub>(aq)<sub>pore</sub>/I<sup>-</sup>(aq) redox reaction (reaction S3),  ${}^{E_{I_2(aq)_{pore}/I^-(aq)}}$ , can also be expressed as:

$$I_2(aq)_{pore} + 2e^- \rightleftharpoons 2I^-(aq)$$
(S3)

$$E_{I_{2}(aq)_{pore}/I^{-}(aq)} = E_{I_{2}(aq)_{pore}/I^{-}(aq)}^{\circ} - \frac{RT}{2F} \ln\left(\frac{C_{I^{-}(aq)}}{C_{I_{2}(aq)_{pore}}}\right)$$
(S4)

At equilibrium,  $E_{I_2(aq)_{bulk}/I^-(aq)}$  is the same as  $E_{I_2(aq)_{pore}/I^-(aq)}$ . Therefore, the difference between the two half-redox potentials,  $\Delta E$ , can be expressed as:

$$\Delta E = \left\{ E_{I_2(aq)_{bulk}/I^-(aq)}^{\circ} - E_{I_2(aq)_{pore}/I^-(aq)}^{\circ} \right\} - \frac{RT}{2F} \ln \left( \frac{C_{I_2(aq)_{pore}}}{C_{I_2(aq)_{bulk}}} \right)$$
(S5)

Because  $C_{I_2(aq)_{pore}}/C_{I_2(aq)_{bulk}}$  at equilibrium is  $K_{stab}$ , we can derive equation 4 in the article from equation S5.

# Estimation of specific cell capacitance (SC<sub>cell</sub>), energy density (ED), and power density (PD) in (-)micro-C|NaI(*aq*) with/without NaBr(*aq*)|micro-C(+)

In micro-C|NaI(aq) with/without NaBr(aq)|micro-C, SC<sub>cell</sub> (F g<sup>-1</sup>) was estimated from charge/discharge curves using equation S6:<sup>[1]</sup>

$$SC_{spec, cell} = i \cdot \Delta t / (\Delta V \cdot m)$$
 (S6)

where  $\Delta V$  is the driven cell potential, *i* is the applied current at charge and discharge,  $\Delta t$  is the time during charge and discharge, and *m* is the mass of the total micro-C in both the positive and negative electrodes of the symmetric cell.

The ED (Wh/kg) and PD (W/kg) of the cell were estimated from discharge curves using:<sup>[2]</sup>

$$ED = \frac{1}{2}SC_{cell}\Delta V^2 \tag{S7}$$

$$PD = ED/\Delta t \tag{S8}$$

# Estimation of C<sub>ZIRB</sub> from (-)Zn|0.2 M ZnSO<sub>4</sub> + 10 mM NaI with/without 5 mM NaBr|micro-C(+)

The  $E_{cell}$  vs. capacity curves in Figure 4 were obtained from the  $E_{cell}$  vs. *t* curves at constantly applied currents in Figure S11, and the specific capacity of the corresponding electrochemical cells was estimated by:

$$C_{ZIRB} = i \cdot \Delta t/m \tag{S9}$$

where *m* is the mass of micro-C in the cell.



Fig. S1 The FE-SEM images of (a) micro-C and (b) PG, (c)  $N_2$  ADS and DES and (d) the corresponding pore-size distribution in micro-C.



**Fig. S2** Potential vs. pH for an iodine/H<sub>2</sub>O system in an aqueous solution at 25 °C. Reprinted from Frackowiak et al.<sup>[2]</sup> Copyright (2014) with permission from Elsvier.



Fig. S3 CVs from (a) (-)micro-C|0.1 M NaI|PG(+) and (b) (-)micro-C|0.05 M NaBr|PG(+) at 2 mV s<sup>-1</sup>.



**Fig. S4** The integrated area to estimate  $Q_{Ox}$  and  $Q_{Red}$  from CVs on a micro-C measured in (-)micro-C|0.1 M NaI(aq) (a) without/(b) with 0.05 M NaBr(aq)|micro-C(+), respectively.



Fig. S5 2D axial symmetric domain of the simulation for the theoretical model.



**Fig. S6** (a, c) Simulated steady-state voltammograms associated with electro-oxidation of I<sup>-</sup> in a solution containing (a) I<sup>-</sup> only, and (c) I<sup>-</sup> and Br<sup>-</sup>. (b, d) Corresponding concentration profiles of each species vs.  $\eta$  at the electrode surface in the voltammogram from a solution with (b) I<sup>-</sup> only and (d) I<sup>-</sup> and Br<sup>-</sup>.



**Fig. S7** The reproducibility test of  $E_{cell}$  (black),  $E_+$  (red), and  $E_-$  (blue)-profiles vs. t at 0.5 A g<sup>-1</sup> from (a) (-)micro-C|0.5 M NaI|micro-C(+) and (b) (-)micro-C|0.5 M NaI + 0.4 M NaBr|micro-C(+).



**Fig. S8**  $E_{cell}$  (black),  $E_+$  (red), and  $E_-$  (blue)-profiles as a function of *t* at constantly applied 0.5 A g<sup>-1</sup> to the two electrochemical cells configured as (a) micro-C|0.5 M NaI|PG and (b) micro-C|0.5 M NaI + 0.4 M NaBr|PG, respectively.



**Fig. S9** (a) The charge/discharge profiles vs. *t* and (b)  $SC_{cell}$  at 0.5 A g<sup>-1</sup> from the symmetric cells containing 0.5 M NaI with different concentration of Br.



**Fig. S10**  $E_{cell}$  vs. *t* curves at different current densities from (-)micro-C|0.5 M NaI|micro-C(+) (black), (-)micro-C|0.5 M NaI + 0.4 M NaBr|micro-C(+) (blue), and (-)micro-C|0.5 M NaI + 0.4 M NaNO<sub>3</sub>|micro-C(+) (red).



Fig. S11 Cycle stability of (-)micro-C|0.5 M NaI + 0.4 M NaBr|micro-C(+) at 4 A g<sup>-1</sup>.



Fig. S12 Deconvoluted high-resolution Na 2s XPS spectrum from micro-C serving as the positive electrode after charging to  $E_{cell} = 1.3$  V at 0.5 A g<sup>-1</sup> from (-)micro-C|0.5 M NaI|micro-C(+).



| Element | At. No. | Netto   | Mass<br>[%] | Mass Norm.<br>[%] | Atom<br>[%] | abs. error [%]<br>(3 sigma) | rel. error [%]<br>(3 sigma) |
|---------|---------|---------|-------------|-------------------|-------------|-----------------------------|-----------------------------|
| С       | 6       | 1120130 | 62.54       | 63.08             | 84.33       | 19.57                       | 31.29                       |
| N       | 7       | 31650   | 8.79        | 8.87              | 10.17       | 3.31                        | 37.62                       |
| 0       | 8       | 21097   | 2.21        | 2.23              | 2.24        | 0.96                        | 43.46                       |
| I.      | 53      | 979952  | 25.61       | 25.83             | 3.27        | 2.24                        | 8.75                        |
|         |         | Sum     | 99.15       | 100.00            | 100.00      |                             |                             |

Fig. S13 SEM images and corresponding EDS elemental mapping from micro-C serving as

positive electrodes in (-)micro-C(0.5 M NaI|micro-C(+) cell after charging to  $E_{cell} = 1.3$  V.

The micro-C were analyzed after rinsing with DI water.



Fig. S14 (a) Raman spectra and (b) a deconvoluted high-resolution I 3d XPS spectrum from micro-C serving as positive electrodes after charging to  $E_{cell} = 1.3$  V at 0.5 A g<sup>-1</sup> from (-)micro-C|0.5 M NaI + 0.4 M NaBr|micro-C(+).



Fig. S15 The SEM images and corresponding EDS elemental mapping from micro-C serving as positive electrodes in (-)micro-C|0.5 M NaI with 0.4 M NaBr|micro-C(+) cell after charging at 0.5 A g<sup>-1</sup> to  $E_{cell} = 1.3$  V. The micro-C were analyzed after rinsing with DI water.



**Fig. S16**  $E_{cell}$  vs. *t* curves in the ZIRB containing 10 mM NaI with (red)/ without (black) 5mM NaBr at (a) 0.3 A g<sup>-1</sup> and (b) 0.015 A g<sup>-1</sup>.



**Fig. S17** The reproducibility test of  $E_{cell}$  vs.  $C_{ZIRB}$  curves in a model ZIRB containing 10 mM NaI with (red)/without (black) 5 mM NaBr at (a) 0.3 A g<sup>-1</sup> and (b) 0.015 A g<sup>-1</sup>.



**Fig. S18**  $E_{cell}$  vs.  $C_{ZIRB}$  curves in model ZIRBs at various current densities from (-)Zn|0.2 M ZnSO<sub>4</sub>(*aq*) + 10 mM NaI(*aq*) |micro-C(+) (black), (-)Zn|0.2 M ZnSO<sub>4</sub>(*aq*) + 10 mM NaI(*aq*) + 5mM NaBr(*aq*)|micro-C(+) (blue), and (-)Zn|0.2 M ZnSO<sub>4</sub>(*aq*) + 10 mM NaI(*aq*) + 5mM NaNO<sub>3</sub>(*aq*)|micro-C(+) (red), respectively.

**Table S1.** Reactions and corresponding parameters for a simulation without Br<sup>-</sup>, with results displayed as simulated voltammograms and corresponding concentration profiles in Figure 2b-c and Figure S6a-b, respectively.

| Reactions                                                     | Parameters                                                           |
|---------------------------------------------------------------|----------------------------------------------------------------------|
| $I \cdot + e^{-} \rightleftharpoons I^{-}(aq)$                | $E_{\rm eq} = 0.3 \text{ V},  k^0 = 0.1 \text{ cm/s},  \alpha = 0.5$ |
| $2I \rightarrow I_2(aq)$                                      | $K_{\rm eq,(6)} = 200$                                               |
| $I_2(aq) \rightleftharpoons I_2(I_2-F)$                       | $K_{\rm eq,(7)} = 1000$                                              |
| $I^{-}(I_2-F) + I_2(I_2-F) \rightleftharpoons I_3^{-}(I_2-F)$ | $K_{\rm eq,(8)} = 724$                                               |

Relevant time-dependent diffusion equations

$$(1)\frac{\partial C_{I.}}{\partial t} = D_{I.} \left[ \frac{\partial^{2} C_{I.}}{\partial r^{2}} + \frac{2\partial C_{I.}}{r \partial r} \right] - 2k_{f,eq,(6)}C_{I.}^{2} + 2k_{b,eq,(6)}C_{I_{2}(aq)}$$

$$(2)\frac{\partial C_{I^{-}(I_{2}-F)}}{\partial t} = D_{I^{-}(I_{2}-F)} \left[ \frac{\partial^{2} C_{I^{-}(I_{2}-F)}}{\partial r^{2}} + \frac{2}{r} \frac{\partial C_{I^{-}(I_{2}-F)}}{\partial r} \right] - k_{f,eq,(8)}C_{I_{2}(I_{2}-F)}C_{I^{-}(I_{2}-F)} + k_{b,eq,(8)}C_{I_{3}}(I_{2}-F)$$

$$(3)\frac{\partial C_{I_{2}(aq)}}{\partial t}$$

$$= D_{I_{2}(aq)} \left[ \frac{\partial^{2} C_{I_{2}(aq)}}{\partial r^{2}} + \frac{2}{r} \frac{\partial C_{I_{2}(aq)}}{\partial r} \right] + k_{f,eq,(6)}C_{I.}^{2} - k_{b,eq,(6)}C_{I_{2}(aq)}$$

$$(4)\frac{\partial C_{I_{2}(I_{2}-F)}}{\partial t}$$

$$\begin{aligned} \partial t \\ &= D_{I_2(I_2 - F)} \bigg[ \frac{\partial^2 C_{I_2(I_2 - F)}}{\partial r^2} + \frac{2^{\partial C_{I_2(I_2 - F)}}}{r \partial r} \bigg] + k_{f,eq,(7)} C_{I_2(aq)} - k_{b,eq} \bigg] \\ &+ k_{b,eq,(8)} C_{I_3^-(I_2 - F)} \end{aligned}$$

$$(5)\frac{\partial C_{I_{3}(l_{2}-F)}}{\partial t} = D_{I_{3}(l_{2}-F)} \left[ \frac{\partial^{2} C_{I_{3}(l_{2}-F)}}{\partial r^{2}} + \frac{2}{r} \frac{\partial C_{I_{3}(l_{2}-F)}}{\partial r} \right] + k_{f,eq,(8)} C_{I_{2}(l_{2}-F)} C_{I^{-}(l_{2}-F)} - k_{b,eq,(8)} C_{I_{3}(l_{2}-F)}$$

Initial condition, completing the definition of the problem

$$C_{I^{-}(I_{2}-F)} = C_{I_{2}(aq)} = C_{I_{2}(I_{2}-F)} = C_{I^{-}_{3}(I_{2}-F)} = 0, C_{I^{-}} = 100 \ mM$$
  

$$D_{I^{-}} = D_{I^{-}(I_{2}-F)} = D_{I^{-}_{3}(I_{2}-F)} = 1.47 \times 10^{-5}, D_{I_{2}(I_{2}-F)} = 1.72 \times 10^{-5}$$
  

$$D_{I_{2}(I_{2}-F)} = 3.00 \times 10^{-8} \ cm \ s^{-1}$$

**Table S2.** Reactions and the Corresponding parameters for a simulation with Br<sup>-</sup>, with results displayed as simulated voltammograms and corresponding concentration profiles in Figure 2d-e and Figure S6c-d, respectively.

| Reactions                                                  | Parameters                                                         |
|------------------------------------------------------------|--------------------------------------------------------------------|
| $I \cdot + e^{-} \rightleftharpoons I^{-}(aq)$             | $E_{\rm eq} = 0.3 \text{ V}, k^0 = 0.1 \text{ cm/s}, \alpha = 0.5$ |
| $2\mathbf{I} \rightleftharpoons \mathbf{I}_2 \text{ (aq)}$ | $K_{\rm eq.(6)} = 200$                                             |
| $I_2 (aq) \rightleftharpoons I_2(I_2-F)$                   | $K_{\rm eq,(7)} = 1000$                                            |
| $I_2(I_2-F) + I^-(I_2-F) \rightleftharpoons I_3^-(I_2-F)$  | $K_{\rm eq.(8)} = 724$                                             |
| $I_2(I_2-F) + Br(I_2-F) \rightleftharpoons I_2Br(I_2-F)$   | $K_{\rm eq,(9)} = 12$                                              |

Relevant time-dependent diffusion equations

$$(1)\frac{\partial C_{I.}}{\partial t} = D_{I.} \left[ \frac{\partial^{2} C_{I.}}{\partial r^{2}} + \frac{2\partial C_{I.}}{r \partial r} \right] - 2k_{f,eq,(6)}C_{I.}^{2} + 2k_{b,eq,(6)}C_{I_{2}(aq)}$$

$$(2)\frac{\partial C_{I^{-}(I_{2}-F)}}{\partial t} = D_{I^{-}(I_{2}-F)} \left[ \frac{\partial^{2} C_{I^{-}(I_{2}-F)}}{\partial r^{2}} + \frac{2\partial^{2} C_{I^{-}(I_{2}-F)}}{r \partial r} \right] - k_{f,eq,(8)}C_{I_{2}(I_{2}-F)}C_{I^{-}(I_{2}-F)} + k_{b,eq,(8)}C_{I_{3}^{-}(I_{2}-F)}$$

$$(3)\frac{\partial C_{I_{2}(aq)}}{\partial t} = D_{I_{2}(aq)} \left[ \frac{\partial^{2} C_{I_{2}(aq)}}{\partial r^{2}} + \frac{2\partial C_{I_{2}(aq)}}{r \partial r} \right] + k_{f,eq,(6)}C_{I.}^{2} - k_{b,eq,(6)}C_{I_{2}(aq)} - (4)\frac{\partial C_{I_{2}(I_{2}-F)}}{\partial t}$$

$$= D_{I_{2}(I_{2}-F)} \left[ \frac{\partial^{2} C_{I_{2}(I_{2}-F)}}{\partial r^{2}} + \frac{2^{\partial} C_{I_{2}(I_{2}-F)}}{\partial r} \right] + k_{f,eq,(7)} C_{I_{2}(aq)} - k_{b,eq,(7)} C_{I_{2}(aq)} -$$

$$(5)\frac{\partial C_{I_{3}(l_{2}-F)}}{\partial t} = D_{I_{3}(l_{2}-F)}\left[\frac{\partial^{2}C_{I_{3}(l_{2}-F)}}{\partial r^{2}} + \frac{2}{r}\frac{\partial C_{I_{3}(l_{2}-F)}}{\partial r}\right] + k_{f,eq,(8)}C_{I_{2}(l_{2}-F)}C_{I^{-}(l_{2}-F)} - k_{b,eq,(8)}C_{I_{3}(l_{2}-F)}$$

$$\begin{array}{c} \partial C_{Br^{-}(I_{2}-F)} \\ (6) \overline{\partial t} \\ = D_{Br^{-}(I_{2}-F)} \left[ \frac{\partial^{2} C_{Br^{-}(I_{2}-F)}}{\partial r^{2}} + \frac{2}{r} \frac{\partial C_{Br^{-}(I_{2}-F)}}{\partial r} \right] - k_{f,eq,(9)} C_{I_{2}(I_{2}-F)} \end{array}$$

$$(7) \frac{\partial C_{I_2Br^-(I_2-F)}}{\partial t} = D_{I_2Br^-(I_2-F)} \left[ \frac{\partial^2 C_{I_2Br^-(I_2-F)}}{\partial r^2} + \frac{2}{r} \frac{\partial C_{I_2Br^-(I_2-F)}}{\partial r} \right] + k_{f,eq,(9)} C_{I_2(I_2-F)} C_{Br^-(I_2-F)} - k_{b,eq,(9)} C_{I_2Br^-(I_2-F)} - k_{b,eq,(9)} C_{I_2Br^-(I_2-$$

Initial condition, completing the definition of the problem

$$\frac{C_{I^{-}(I_{2}-F)} = C_{I_{2}(aq)} = C_{I_{2}(I_{2}-F)} = C_{I_{3}(I_{2}-F)} = C_{I_{2}Br^{-}(I_{2}-F)} = 0, C_{I} = 100 \text{ mM}, \\
C_{Br^{-}(I_{2}-F)} = \frac{1}{2}C_{I}, D_{I} = D_{I^{-}(I_{2}-F)} = D_{I_{3}(I_{2}-F)} = D_{I_{2}Br^{-}(I_{2}-F)} = 1.47 \times 10^{-5}, \\
D_{I_{2}(aq)} = 1.72 \times 10^{-5}, D_{I_{2}(I_{2}-F)} = 3.00 \times 10^{-8}, D_{Br^{-}(I_{2}-F)} = 1.35 \times 10^{-5} \text{ cm s}^{-1}$$

**Table S3.** ED at a specific PD from the electrochemical capacitors operated in an aqueous

 solution with various redox active species.

| <b>Redox active species in ECs</b><br>(Abbreviation if necessary) | Energy density (ED)<br>at power density (PD)                                                                    | No. of Ref.<br>in the<br>article |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------|
| NaI + NaBr                                                        | 26.2 Wh kg <sup>-1</sup> at 327.1 W kg <sup>-1</sup> ,<br>15.9 Wh kg <sup>-1</sup> at 6513.6 W kg <sup>-1</sup> | This work                        |
| KSeCN                                                             | 11.7 Wh kg <sup>-1</sup> at 368.2 W kg <sup>-1</sup> ,<br>3.6 Wh kg <sup>-1</sup> at 3327 W kg <sup>-1</sup>    | [48]                             |
| $H_{3}PW_{12}O_{40}$                                              | 1.6 Wh kg <sup>-1</sup> at 98.4 W kg <sup>-1</sup>                                                              | [49]                             |
| Hydroquinone (HQ)                                                 | 2.5 Wh kg <sup>-1</sup> at 99.4 W kg <sup>-1</sup>                                                              | [49]                             |
| 2, 6-Dihydroxyanthraquinone<br>(2, 6-DHAQ)                        | 8.9 Wh kg <sup>-1</sup> at 119 W kg <sup>-1</sup>                                                               | [50]                             |
| $K_3[Fe(CN)_6]$                                                   | 11.8 Wh kg <sup>-1</sup> at 188 W kg <sup>-1</sup>                                                              | [50]                             |
| K <sub>3</sub> [Fe(CN) <sub>6</sub> ]                             | 36.9 Wh kg <sup>-1</sup> at 225 W kg <sup>-1</sup>                                                              | [51]                             |
| Dihydroxyanthraquinone+hydroquinone<br>(DHAQ + HQ)                | 21.1 Wh kg <sup>-1</sup> at 500 W kg <sup>-1</sup>                                                              | [52]                             |
| KI                                                                | 11.56 Wh kg <sup>-1</sup> at 1000 W kg <sup>-1</sup>                                                            | [53]                             |
| Anthraquinone-2-solfonic acid sodium<br>(AQS)                     | 19.35 Wh kg <sup>-1</sup> at 1000 W kg <sup>-1</sup>                                                            | [53]                             |

#### Abbreviations

Aqua-ESSs: aqueous energy storage systems ZPI-RFB: Zn-polyiodide redox flow battery ZIRB: Zn-iodine rechargeable battery I-EC: Iodide redox electrolyte electrochemical capacitor PG: pyrolytic graphite micro-c: microporous carbon I<sub>2</sub>-F: Iodine-Film  $\eta$ : overpotential  $E_{eq}$ : equilibrium potential  $K_{\text{stab}}$ : stability constant  $K_{eq}$ : equilibrium constant  $E^{\text{o}}$ : standard reduction potential *C*: concentration *R*: gas constant *T*: absolute temperature *F*: Faraday constant  $n_{e^-}$ : number of electrons  $Q_{\text{ox or Red}}$ : quantitative charge from the voltammetric oxidation and reduction peaks  $E_+$ : half-potential of a positive electrode *E*.: half-potential of a negative electrode  $E_{\text{cell}}$ : cell potential  $E_{\rm oc}$ : open-circuit potential SC<sub>cell</sub>: specific cell capacitance

 $C_{\text{ZIRB}}$ : specific capacity of ZIRB

ED: energy density

PD: power density

### References

- H. Wang, H. Yi, C. Zhu, X. Wang, H. Jin Fan, *Nano Energy* 2015, **13**, 658-669. M. Meller, J. Menzel, K. Fic, D. Gastol, E. Frackowiak, *Solid State Ionics* 2014, **265**, [1] [2] 61-67.