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Detailed description for equation 4

E -
For the I(aq)ui/I(aq) redox reaction in reaction S1, the half-redox potential, 2Ppu/! @

can be expressed as a Nernst equation:

L(aq)puk + 2 = 2I7(aq) (S1)

2

C
° RT 1™ (aq)
In

=F - 1
IZ(aq)bulk/I " (aq) Iz(aq)bulk/l " (aq) ne _ F

RAC (S2)

no_., . . D
where e~ is the number of electrons in the redox reaction, which is 2. The half-redox

E -
potential of the I,(aq)ore/I"(aq) redox reaction (reaction S3), '2“Ppore/’ D can also be
expressed as:

L(aq)pore + 2¢” = 2I1(aq) (S3)

C 2
° RT 1™ (aq)
In|————

=E -
1@ pope/1™ @) 1@y, /1 (@) 2F | C;

Z(aq)pore (S4)

E _ E _
At equilibrium, "2Pbuik/’ @9 jg the same as  '2“Ppore/! @9 Therefore, the difference

between the two half-redox potentials, AE, can be expressed as:

) o RT I (aq)
AE = {E . -E . ] I [ 2o
L@@y /1 (@) 1@y, /1~ @) 2F |C

BACLUM) (S5)

/C

Because 2Ppore’ " 12Dpuik at equilibrium is Kyap, we can derive equation 4 in the article from

equation S5.



Estimation of specific cell capacitance (SC,.), energy density (ED), and power density
(PD) in (-)micro-C|Nal(aq) with/without NaBr(ag)|micro-C(+)
In micro-C[Nal(aq) with/without NaBr(ag)|micro-C, SC. (F g'') was estimated from
charge/discharge curves using equation S6:!!]

SCopec, cont = i ALI(AV - m) (S6)
where AV is the driven cell potential, i is the applied current at charge and discharge, At is the
time during charge and discharge, and m is the mass of the total micro-C in both the positvie

and negative electrodes of the symmetric cell.

The ED (Wh/kg) and PD (W/kg) of the cell were estimated from discharge curves using:[*]

1 2
ED = ~SC oAV

cel

(S7)

PD = ED/At (S8)

Estimation of Czgrp from (-)Zn|0.2 M ZnSO4 + 10 mM Nal with/without 5 mM
NaBr|micro-C(+)
The E vs. capacity curves in Figure 4 were obtained from the E vs. f curves at constantly
applied currents in Figure S11, and the specific capacity of the corresponding electrochemical
cells was estimated by:

Cyipp = i+ At/m (S9)

where m is the mass of micro-C in the cell.
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Fig. S2 Potential vs. pH for an iodine/H,O system in an aqueous solution at 25 °C. Reprinted

from Frackowiak et al.[?] Copyright (2014) with permission from Elsvier.
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Fig. S12 Deconvoluted high-resolution Na 2s XPS spectrum from micro-C serving as the

positive electrode after charging to E.oy= 1.3 V at 0.5 A g from (-)micro-C|0.5 M Nal|micro-

C(+).
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Mass Mass Norm. Atom abs. error [%)] rel. error [%)
Element At. No. Netto

(%) (%] [%] (3 sigma) (3 sigma)
C 6 1120130 62.54 63.08 84.33 19.57 31.29
N 7 31650 8.79 8.87 10.17 3.31 37.62
(0] 8 21097 2.21 223 224 0.96 43.46
I 53 979952 25.61 25.83 3.27 2.24 8.75

Sum 99.15 100.00 100.00
Fig. S13 SEM images and corresponding EDS elemental mapping from micro-C serving as

positive electrodes in (-)micro-C|0.5 M Naljmicro-C(+) cell after charging to E.; =1.3 V.

The micro-C were analyzed after rinsing with DI water.
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Fig. S14 (a) Raman spectra and (b) a deconvoluted high-resolution I 3d XPS spectrum from

micro-C serving as positive electrodes after charging to E..; = 1.3 V at 0.5 A g'! from (-)micro-

C|0.5 M Nal + 0.4 M NaBr|micro-C(+).
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Fig. S15 The SEM images and corresponding EDS elemental mapping from micro-C serving
as positive electrodes in (-)micro-C|0.5 M Nal with 0.4 M NaBr|micro-C(+) cell after charging

at 0.5 A g to E.ep = 1.3 V. The micro-C were analyzed after rinsing with DI water.
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Fig. S16 E.. vs. t curves in the ZIRB containing 10 mM Nal with (red)/ without (black) SmM

NaBrat (a) 0.3 A g and (b) 0.015 A g
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Fig. S17 The reproducibility test of E.; vs. Czrp curves in a model ZIRB containing 10 mM

Nal with (red)/without (black) 5 mM NaBr at (a) 0.3 A g'! and (b) 0.015 A g’
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Table S1. Reactions and corresponding parameters for a simulation without Br-, with results

displayed as simulated voltammograms and corresponding concentration profiles in Figure

2b-c and Figure S6a-b, respectively.

Reactions

Parameters

[ +e = I(aq)
2I- = Ir(aq)
Lr(aq) = Ix(I>-F)

Eq=03V,k°=0.1 cm/s, =0.5
Keq,(6): 200
Keq,(7) =1000

I'(Iz-F) + Iz(Ig-F) = 13'(12-F) Keq,(g) =724
Relevant time-dependent diffusion equations
(?CI, aZCI. 26(:1 2
3 = -
D= 2 | = ZreqCr- "t 2K eq 6 1@
_ a*C _ ac _
17y~ F) I7(Uy-F) o 17 (,-F) . .
2 = + - C C + C
) ot 17y~ F) ar2 r or fea @)~ 1, (1,-F) "~ () b,eq,(8) 13(1,-F)
€} aq)
3
3) ot
2
0°Ch g 9C1,(aq) ,
=Preo| 7 g | T Rrea@Cr " KbeaCiytan)
aC’z(’z - F)
C))
at
9%C ac
_ b ’2(’2‘F)+2 (13- F) Tk c f
— TIy(1,-F) ar2 r  or frea(7)~1,(aq) ~ "beq,
+k C
bea® 12, -
¢ (,-F) 62C1_ (,-F) o, - (1, -F)
3V2” 3U2” 2 f3lp-
5 = + +k C C -k C
®) at 13U,-F) ar? r or Lea® Uy =B =1, -m P72, - R

Initial condition, completing the de

finition of the problem

Cc =C =C =C
t=0 1 U=P lhlaq) = =1y = F)

D,. =D _ =D _
17, -F) 13U,-F)

_ -8 -1
D,Z(,Z_F) =3.00x10" "cms

=0,C,. = 100mM

>

13Uy-F)

=147 x 1077, Dy 1y -ry=172% 107°
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Table S2. Reactions and the Corresponding parameters for a simulation with Br-, with results

displayed as simulated voltammograms and corresponding concentration profiles in Figure

2d-e and Figure S6c-d, respectively.

Reactions

Parameters

I +e = I(aq)

21 = 1 (aq)

L, (aq) = L(I>-F)

L(Ir-F) + I'(I,-F) = I57(I,-F)

Iz(Iz-F) + BI"(IQ-F) = IQBr'(Iz-F)

Eqq=03V,k°=0.1 cy/s, @ =0.5
Keq(6)= 200

Keq7y= 1000

Keq 3= 724

Keq’(g) =12

Relevant time-dependent diffusion equations

ac;. 9%c;. 20C,. ,
) = -
D5 =P oo |~ 2 rea@Cr " 2Koeq)Ciyan)
_ 9°C _ C_
17 (,-F) 17(y=F) o 17 (,-F)
)— - = + —kp o € c +ky o C
S I7U,-P| gy r or fea® Uy =B 1=, -ry e ® 7120, - F)
€} ag)
3
3) ™
2
0 Clz(aq) zaclz(aq) )
=Dz T | T rea@Cr " KneaCiyan -
(4)6(312(12 -F)
at
2
d C12(12—F) 26C12(12—F)
By-P "z T ar | T e Ciyan T Kneac
Thoea®C- gy T Ko ray o gyt Rnea g
CI_(I P 2Cl‘(I P aC1‘(1 F)
3V2” 3V2” 2 13Uy~
5)—— - =D + +hy o o C c —ky e C
®) at 130y-F) ar2 r  or fea® Uy =B =, - "Pea®7 20, -p
Br=(,-F)
6
(6) o
*c c
Br (IZ—F) 2 br (IZ—F)
=D,.- + K eq©Crya,-p
Br=(I,-F) or? r or <4 2V2
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c _
(7 I,Br~(I,-F)
) ot
a%C

Iy

_ ac
Br (IZ—F) 2 IZBr (IZ—F)
+
2
I

B (Iy-F)

= +k C C -k
I BT_(IZ—F) arZ I a‘r f,eq,(9) 12(12_F) B‘I"_(IZ—F) b,eq,(9)

Initial condition, completing the definition of the problem

C_ =C, am=C =C _ =C _ =0,C,. = 100 mM,
t=0, ! (,-F) 2000 11y =F) i3 (1,-F) T L,Br(1,-F)
1 -5
_ =-C,. D;. =D _ =D _ =D _ =1.47 x 10
Bro(,-F) 2 17 (1,-F) 15(1,-F) 1,Br~ (I, - F)
_ -5 _ -8 _ -5 -1
Dy (ay = 172X 107, D) _p=3.00 X 10 ’DBr‘<12—F)_1'35X10 cms
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Table S3. ED at a specific PD from the electrochemical capacitors operated in an aqueous

solution with various redox active species.

Redox active species in ECs Energy density (ED) Noi.notth:ef.
(Abbreviation if necessary) at power density (PD) article
Nal + NaB 26.2 Wh kg! at 327.1 W kg, Thi K
al—habr 15.9 Wh kg! at 6513.6 W kg™! 1s wor
KSeCN 11.7 Wh kg! at 368.2 W kg, 48
e 3.6 Whkg'! at 3327 W kg'! [48]
H3PW12040 1.6 Wh kg'1 at 984 W kg'l [49]
Hydroquinone (HQ) 2.5 Whkg'!at99.4 W kg-! [49]
2, 6-Dihydroxyanthraquinone 1 1
(2. 6-DHAQ) 8.9 Whkg'at119 W kg [50]
K;[Fe(CN)g] 11.8 Whkg! at 188 W kg'! [50]
K;[Fe(CN)g] 36.9 Whkg! at 225 W kg'! [51]
Dihydroxyanthraquinone+hydroquinone 4 1
(DHAQ + HQ) 21.1 Wh kg! at 500 W kg [52]
KI 11.56 Wh kg! at 1000 W kg! [53]
Anthraqumone-%:glg))mc acid sodium 19.35 Wh kg at 1000 W k! 53]
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Abbreviations

Aqua-ESSs: aqueous energy storage systems
ZPI-RFB: Zn-polyiodide redox flow battery
ZIRB: Zn-iodine rechargeable battery

I-EC: Todide redox electrolyte electrochemical capacitor
PG: pyrolytic graphite

micro-c: microporous carbon

I,-F: Iodine-Film

n: overpotential

Eqy: equilibrium potential

Kp: stability constant

K.q: equilibrium constant

E °: standard reduction potential

C: concentration

R: gas constant

T: absolute temperature

F: Faraday constant

e”: number of electrons
Oox or Red: quantitative charge from the voltammetric oxidation and reduction peaks
E.: half-potential of a positive electrode
E: half-potential of a negative electrode
E i: cell potential
E,.: open-circuit potential
SCeen: specific cell capacitance

Czrp: specific capacity of ZIRB
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ED: energy density

PD: power density
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