Supporting information

Electron-Deficient Diketone Unit Engineering for Non-fused Ring Acceptors Enabling

Over 13\% Efficiency in Organic Solar Cells

Dou Luo, ${ }^{a}$ Lanqing Li, ${ }^{\text {b }}$ Yongqiang Shi, ${ }^{\text {c }}$ Kai Wang, ${ }^{\text {a }}$ Jianqi Zhang, ${ }^{\text {d }}$ Xugang Guo ${ }^{\text {b }}$ and Aung Ko Ko Kyawa*

Experimental Section

All manipulations involving air-sensitive reagents were performed under an inert atmosphere of dry nitrogen. Compounds 1,3-dibromo-5-(2-ethylhexyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)dione (4) ${ }^{[1]}, 2,8$-dibromo-5-(2-ethylhexyl)-4H-dithieno[3,2-c:2',3'-e]azepine-4,6(5H)-dione (5) ${ }^{[2]}$ were synthesized according to the method in the literature. All the other starting materials, unless otherwise specified, were purchased commercially and used as received without further purification.

Synthesis of 4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene (1)
4H-cyclopenta[2,1-b:3,4-b']dithiophene ($3 \mathrm{~g}, 16.82 \mathrm{mmol}$), 2-ethylhexyl bromide (7.46 g , $38.68 \mathrm{mmol}), \mathrm{KOH}(2.8 \mathrm{~g}, 50.46 \mathrm{mmol}), \mathrm{KI}(8.37 \mathrm{~g}, 50.46 \mathrm{mmol})$ were added in 30 mL DMSO under nitrogen atmosphere and stirred at $0^{\circ} \mathrm{C}$ for 10 min , then stirred at room temperature overnight. Then the mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. The organic layer was washed with water and then dried over MgSO_{4}. After removal of solvent, the crude product was purified on a silica-gel column chromatography using petroleum ether as the eluent to afford light yellow liquid ($6.1 \mathrm{~g}, 90.1 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right): ~ \delta$ $7.10(\mathrm{~d}, J=4.88 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.06-0.80(\mathrm{~m}, 18 \mathrm{H}), 0.75(\mathrm{~m}$, $6 \mathrm{H}), 0.59(\mathrm{~m}, 6 \mathrm{H})$. HRMS: calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{~S}_{6}, 402.6$; found, 402.5 (100\%).

To a 100 mL two-necked flask, DMF (1 mL) and $\mathrm{POCl}_{3}(0.82 \mathrm{~mL}, 8.92 \mathrm{mmol})$ were added in 30 mL 1,2-dichloroethane $\left(\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After being stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min , compound $\mathbf{1}(3 \mathrm{~g}, 7.44 \mathrm{mmol})$ was directly injected into the flask. Then the mixture was refluxed at $90^{\circ} \mathrm{C}$ overnight. After being cooled to room temperature, NaOH aqueous solution was added and then the resulting mixture continued stirring for 20 min . Then the mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. The organic layer was washed with water and then dried over MgSO_{4}. After removal of solvent, the crude product was purified on a silica-gel column chromatography using petroleum ether as the eluent to afford a yellow oil ($2.5 \mathrm{~g}, 78.1 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{t}$, $J=7.16 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=4.92 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.07-0.80(\mathrm{~m}$, $18 \mathrm{H}), 0.74(\mathrm{t}, J=13.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.61-0.56(\mathrm{~m}, 6 \mathrm{H})$. HRMS: calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{OS}_{2}, 430.7$; found, 430.7 (100\%).

Synthesis of 4,4-bis(2-ethylhexyl)-6-(tributylstannyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-

2-carbaldehyde (3)

To a 100 mL two-necked flask, compound $2(2 \mathrm{~g}, 4.64 \mathrm{mmol})$ and dry THF $(100 \mathrm{~mL})$ were added under nitrogen atmosphere, and the solution was cooled to $-78^{\circ} \mathrm{C}$. N-methylpiperazine ($511.61 \mathrm{mg}, 5.1 \mathrm{mmol}$) was then injected, followed by n-butyllithium ($2.04 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 5.1 mmol), after which the reaction was stirred for 20 min . The reaction was then warmed to $-20^{\circ} \mathrm{C}$, and the second addition of n -butyllithium ($2.04 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 5.1 mmol) was then added dropwise in the solution and left stirring for another 30 min . Then, tributyltin chloride ($1.56 \mathrm{~g}, 4.80 \mathrm{mmol}$) was added and stirred at $-20^{\circ} \mathrm{C}$ for 0.5 h . After that, the mixture was allowed to warm to room temperature and further stirred for 12 h . Finally, the mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, dried over anhydrous MgSO_{4}. Removal of the solvents under reduced pressure yielded brown
oil ($3.3 \mathrm{~g}, 97 \%$). The crude product was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 1.91-1.88(\mathrm{~m}, 4 \mathrm{H})$, $1.66-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.30(\mathrm{~m}, 18 \mathrm{H}), 1.13-1.07(\mathrm{~m}, 4 \mathrm{H}), 0.96-0.87(\mathrm{~m}, 12 \mathrm{H}), 0.74-0.71(\mathrm{~m}$, $9 H), 0.58-0.55(\mathrm{~m}, 12 \mathrm{H})$. HRMS: calcd for $\mathrm{C}_{38} \mathrm{H}_{64} \mathrm{OS}_{2} \mathrm{Sn}, 719.7$; found, 719.7 (100\%).

Synthesis of 6,6'-(5-(2-ethylhexyl)-4,6-dioxo-5,6-dihydro-4H-thieno[3,4-c]pyrrole-1,3-diyl)bis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b'] dithiophene-2-carbaldehyde) (6)
$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(37.4 \mathrm{mg}, 0.032 \mathrm{mmol})$ was added quickly to a mixture of compound $\mathbf{3}$ (782.4 $\mathrm{mg}, 1.08 \mathrm{mmol}$) and compound $4(200 \mathrm{mg}, 0.472 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ under nitrogen atmosphere. The reaction was heated at $110{ }^{\circ} \mathrm{C}$ for 24 h . After being cooled to room temperature, 50 mL of $2 \mathrm{~mol} / \mathrm{L} \mathrm{KF}$ solution was added and then the resulting mixture continued stirring for 20 min . After being filtered, the filtrate was treated with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was subjected to column chromatography over silica gel using petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford a dark red solid ($344 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 9.87(\mathrm{~s}, 2 \mathrm{H}), 7.99-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.03-$ $1.95(\mathrm{~m}, 7 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 12 \mathrm{H}), 0.99-0.90(\mathrm{~m}, 34 \mathrm{H}), 0.77-0.71(\mathrm{~m}, 12 \mathrm{H}), 0.64-0.60(\mathrm{~m}, 18 \mathrm{H})$. HRMS: calcd for $\mathrm{C}_{66} \mathrm{H}_{91} \mathrm{NO}_{4} \mathrm{~S}_{5}, 1122.75$; found, 1122.71.

Synthesis of 6,6'-(5-(2-ethylhexyl)-4,6-dioxo-5,6-dihydro-4H-dithieno[3,2-c:2',3'-e]azepine-2,8-diyl)bis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b'] dithiophene-2-carbaldehyde) (7)
$\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(31.48 \mathrm{mg}, 0.027 \mathrm{mmol})$ was added quickly to a mixture of compound $\mathbf{3}$ (653.8 $\mathrm{mg}, 0.908 \mathrm{mmol})$ and compound $5(200 \mathrm{mg}, 0.395 \mathrm{mmol})$ in toluene $(30 \mathrm{~mL})$ under nitrogen atmosphere. The reaction was heated at $110{ }^{\circ} \mathrm{C}$ for 24 h . After being cooled to room temperature, 50 mL of $2 \mathrm{~mol} / \mathrm{L} \mathrm{KF}$ solution was added and then the resulting mixture continued stirring for 20 min . After being filtered, the filtrate was treated with water and extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was subjected to column chromatography over silica gel using petroleum ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent to afford a dark red solid ($285 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right): \delta 9.86(\mathrm{~s}, 2 \mathrm{H}), 7.86(\mathrm{t}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.34-4.22(\mathrm{~m}, 2 \mathrm{H}), 2.01-0.85(\mathrm{~m}, 10 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 9 \mathrm{H}), 1.00-0.88(\mathrm{~m}, 34 \mathrm{H}), 0.77-0.73$ $(\mathrm{m}, 12 \mathrm{H}), 0.66-0.61(\mathrm{~m}, 18 \mathrm{H})$. HRMS: calcd for $\mathrm{C}_{70} \mathrm{H}_{93} \mathrm{NO}_{4} \mathrm{~S}_{6}, 1204.87$; found, 1204.85.

Synthesis of 2,2'-((2Z,2'Z)-(((5-(2-ethylhexyl)-4,6-dioxo-5,6-dihydro-4H-thieno[3,4-c]pyrrole-1,3-diyl)bis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-6,2-diyl))bis(met hanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (TPDC-4F)

2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (153.7 mg, 0.668 $\mathrm{mmol})$ was added to a solution of compound $6(250 \mathrm{mg}, 0.222 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ under nitrogen atmosphere. Then 1 mL pyridine was injected into the solution. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . After being cooled to room temperature, the mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water and then dried over MgSO_{4}. After removal of solvent, the crude product was purified on a silica-gel column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent. TPDC-4F was obtained as a black solid (233 mg , $68 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 8.91$ (s, 2H), 8.56-8.52 (m, 2H), 8.13-8.06 (m, 2H), 7.72-7.68 (m, 4H), 3.64-3.62 (m, 2H), 2.08-1.95 (m, 9H), 1.43-1.32 (m, 10H), 1.01-0.90 (m, $34 \mathrm{H}), 0.76-0.61(\mathrm{~m}, 30 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 186.08,165.56,162.58$, $160.49,158.34,156.40,155.78,153.16,153.02,140.02,138.92,138.14,136.56,136.14$, $134.52,130.03,125.19,125.02,120.56,114.85,114.46,112.54,69.01,54.41,43.09,38.29$, $35.51,34.30,33.98,30.54,28.40,27.58,27.28,23.89,23.07,22.82,14.09,10.58$. HRMS: [M]
calcd for $\mathrm{C}_{90} \mathrm{H}_{95} \mathrm{~F}_{4} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}_{5}$ 1547.07; found, 1547.4277. Anal. Calcd. for $\mathrm{C}_{90} \mathrm{H}_{95} \mathrm{~F}_{4} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}_{5}$: C 69.87, H 6.19, N 4.53, S 10.36; found: C 69.89, H 6.20, N 4.39, S 10.30.

Synthesis of 2,2'-((2Z,2'Z)-(((5-(2-ethylhexyl)-4,6-dioxo-5,6-dihydro-4H-dithieno[3,2-c:2',3'-e]azepine-2,8-diyl)bis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-6,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene)) dimalononitrile (BTIC-4F)

2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (85.9 mg, 0.373 $\mathrm{mmol})$ was added to a solution of compound $7(150 \mathrm{mg}, 0.124 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ under nitrogen atmosphere. Then 1 mL pyridine was injected into the solution. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 12 h . After being cooled to room temperature, the mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water and then dried over MgSO_{4}. After removal of solvent, the crude product was purified on a silica-gel column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the eluent. BTIC-4F was obtained as a black solid (148.1 mg , 70%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$): $\delta 8.90(\mathrm{~s}, 2 \mathrm{H}), 8.55-8.51(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.91(\mathrm{~s}, 2 \mathrm{H})$, 7.69-7.66 (t, $J=12 \mathrm{~Hz}, 4 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.22(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 9 \mathrm{H}), 1.42-$ $1.26(\mathrm{~m}, 10 \mathrm{H}), 1.03-0.89(\mathrm{~m}, 34 \mathrm{H}), 0.77-0.63(\mathrm{~m}, 30 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl} 3, \mathrm{ppm}\right): \delta$ 186.01, 165.74, 161.28, 159.68, 158.24, 157.19, 155.74, 153.12, 142.26, 139.45, 138.20, $137.47,136.51,135.82,135.40,134.25,129.92,120.50,119.94,115.03,114.81,114.48$, $112.58,112.40,68.54,54.31,49.34,43.20,37.88,35.47,34.07,30.83,28.73,28.50,27.35$, 24.13, 23.15, 22.85, 14.14, 10.58. HRMS: [M] calcd for $\mathrm{C}_{94} \mathrm{H}_{97} \mathrm{~F}_{4} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}_{6}$ 1629.19; found, 1629.4277. Anal. Calcd. for $\mathrm{C}_{94} \mathrm{H}_{97} \mathrm{~F}_{4} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}_{6}$: C 69.30, H 6.00, N 4.30, S 11.81; found: C 69.55, H 5.91, N 4.11, S 11.59.

General Measurement and Characterization: ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra was recorded on Bruker Ascend 400 MHz spectrometer, respectively. High-resolution mass spectra were obtained with Thermo Scientific ${ }^{\mathrm{TM}}$ Q-Exactive. Elemental analyses (EAs) of compounds were performed on Vario EL cube with CHNS pattern in Fudan University (Shanghai, China). Thermogravimetric analysis (TGA) was performed on a Netzsch TG 209 at a heating rate of 10 ${ }^{\circ} \mathrm{C} \min ^{-1}$ under nitrogen atmosphere. Differential scanning calorimetry (DSC) measurements of TPDC-4F and BTIC-4F were performed on a Netzsch DSC 204 under nitrogen at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$.

UV-Vis-NIR absorption spectra were recorded on a Shimadzu UV-3600 UV-Vis-NIR spectrometer. The PL spectra were measured by using a HORIBA LabRAM HR Evolution spectrometer and 583 and 785 nm as an excitation source. The neat PM6, TPDC-4F, BTIC-4F and PM6:TPDC-4F, PM6:BTIC-4F blend films were spin-cast on quartz glass from 10 mg $\mathrm{mL}^{-1} \mathrm{CHCl}_{3}$ solution (total concentration) at a speed of 2000 rpm .

Cyclic voltammetry (CV) was measured on a CHI630E Electrochemical Workstation equipped with a glass carbon working electrode, a platinum wire counter electrode, and an $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode. The measurements were carried out in dry dichloromethane with tetrabutylammonium hexafluorophosphate $\left(0.1 \mathrm{~mol} \mathrm{~L}^{-1}\right)$ as the supporting electrolyte under a nitrogen atmosphere at a scan rate of $100 \mathrm{mV} \mathrm{s}^{-1}$. The potential of $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode was internally calibrated by using the ferrocene/ferrocenium redox couple $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$. Atomic force microscopy (AFM) measurements were carried out using a NanoMan VS microscope in the tapping mode. TEM images were obtained from a JEM-2100F instrument. The timeresolved PL (TRPL) measurements were performed with an Edinburgh Instruments
spectrometer (FLS980), the active layer film was excited by a 405 nm pulsed laser.
Fabrication of organic solar cells: All devices were fabricated based on conventional structure: ITO/PEDOT:PSS/active layer/PDINN/Ag. ITO-coated glass substrates were cleaned by sonification in acetone, detergent, deionized water, and isopropyl alcohol and dried in a nitrogen stream. The pre-cleaned ITO substrate was coated with PEDOT: PSS (filtered through a $0.45 \mu \mathrm{~m}$ PES filter) by spin-coating (4000 rpm . for 30 s , thickness of $\sim 30 \mathrm{~nm}$) and then baked at $150{ }^{\circ} \mathrm{C}$ on a hotplate for 15 min in air. The PEDOT:PSS-coated ITO substrates were transferred into a N_{2}-filled glove box for subsequent steps. The PM6:TPDC-4F and PM6:BTIC-4F (1:1.2 weight ratio) active layer prepared by spin-casting 1-chlorobenzene solution at 2000 rpm for 60 s . The total concentration was $20 \mathrm{mg} \mathrm{mL}^{-1}$ with 0.5% (v:v 99.5:0.5) 1-chloronaphthalene (CN) as the additive. The thickness is approximately 100 nm as measured by the profilometer. Before spin-coating the electron transporting layer, all active layers were thermally annealed at $120^{\circ} \mathrm{C}$ for 10 min . Finally, 5 nm of the perylene diimide functionalized (PDINN) ${ }^{[3]}\left(1 \mathrm{mg} \mathrm{mL}^{-1}\right.$ in methanol) was spin-coated at 3000 rpm for 30 s on the active layer followed by the deposition of 100 nm Ag cathode under a under high vacuum $\left(<2 \times 10^{-4} \mathrm{~Pa}\right)$. All the active devices area were $0.056 \mathrm{~cm}^{2}$ through a shadow mask. The current density-voltage $(J-V)$ curves were measured using Keithley 2400 source meter under 1 sun (AM 1.5 G spectrum) generated from a class solar simulator (Japan, SAN-EI, XES-40S1). The external quantum efficiency (EQE) spectra were measured using a Solar Cell Spectral Response Measurement System QE-R3011 (Enlitech Co., Ltd.). The light intensity at each wavelength was calibrated using a standard single crystal Si photovoltaic cell.

Fabrication of single-carrier devices: Single-carrier device (ITO/PEDOT:PSS(40
$\mathrm{nm}) /$ active layer $\left./ \mathrm{MoO}_{3}(10 \mathrm{~nm}) / \mathrm{Ag}\right)$ and $(\mathrm{ITO} / \mathrm{ZnO}(40 \mathrm{~nm}) /[4]$ active layer/PDINN/ Ag) were fabricated to measure hole and electron mobility of the PM6:TPDC-4F, PM6:BTIC-4F blend films. The active layers comprising PM6:TPDC-4F, PM6:BTIC-4F were spin-cast from 1chlorobenzene solution at 2000 rpm for 60 s (total concentration, $20 \mathrm{mg} \mathrm{mL}^{-1}$). The thickness is approximately 100 nm as measured by the profilometer. The as-cast pure films of TPDC-4F and BTIC-4F were spin-cast from 1-chlorobenzene solution (total concentration, $15 \mathrm{mg} \mathrm{mL}^{-1}$) at 1200 rpm for 60 s . The thickness is approximately 100 nm .

The mobility μ was derived from the SCLC model which is described by the equation $J=$ $(9 / 8) \varepsilon_{0} \varepsilon_{\mathrm{r}} \mu\left(V^{2} / d^{3}\right),{ }^{[5]}$ where J is the current, ε_{0} the permittivity of free space, ε_{r} the relative permittivity of the material, d the thickness of the active layers, and V the effective voltage.

Table S1. Photovoltaic parameters of OSCs based on PM6:TPDC-4F blended films with different $\mathrm{D}:$ A ratio under the illumination of $\mathrm{AM} 1.5 \mathrm{G}, 100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$.

Active layer	$\mathrm{wt} / \mathrm{wt}$	$\boldsymbol{V}_{\text {oc }}$	$\boldsymbol{\boldsymbol { J } _ { \mathrm { sc } }}$	$\boldsymbol{F F}$	PCE
(V)	$\left(\mathrm{mA} \mathrm{cm}^{-2}\right)$	$(\%)$	$(\%)$		
PM6:TPDC-4F	$1: 1$	0.87	18.79	55.48	9.06
	$1: 1.2$	0.872	20.86	56.12	10.20
	0.859	19.94	56.53	9.68	

Table S2. Photovoltaic parameters of OSCs based on PM6:TPDC-4F (D:A=1:1.2, wt/wt) blended films with different thermal annealing temperature, annealing time and amount of 1chloronaphthalene (CN) under the illumination of AM $1.5 \mathrm{G}, 100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$.

Active layer	TA	Additive	V_{oc} (V)	$\begin{gathered} \boldsymbol{J}_{\mathrm{sc}} \\ \left(\mathrm{~mA} \mathrm{~cm}^{-2}\right) \end{gathered}$	$\begin{aligned} & F F \\ & (\%) \end{aligned}$	$\begin{gathered} \text { PCE } \\ (\%) \end{gathered}$
PM6:TPDC-4F (1:1.2)	$110{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	1	0.859	21.03	68.16	12.31
	$120{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	1	0.859	21.10	69.13	12.52
	$130{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	1	0.849	19.16	67.39	10.96
	$120^{\circ} \mathrm{C}+5 \mathrm{~min}$	1	0.859	21.07	68.90	12.47
	$120^{\circ} \mathrm{C}+10 \mathrm{~min}$	1	0.859	21.10	69.13	12.52
	$120^{\circ} \mathrm{C}+20 \mathrm{~min}$	1	0.85	20.32	66.69	11.51
	$120^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.25\% CN	0.853	22.13	69.7	13.15
	$120^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.5\% CN	0.852	22.19	70.6	13.35
	$120{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.75\% CN	0.84	22.05	70.1	12.98

Table S3. Photovoltaic parameters of OSCs based on PM6:BTIC-4F blended films with different D:A ratio under the illumination of AM $1.5 \mathrm{G}, 100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$.

Active layer	$\mathrm{wt} / \mathrm{wt}$	$\boldsymbol{V}_{\mathrm{oc}}$	$\boldsymbol{J}_{\mathrm{sc}}$	$\boldsymbol{F F}$	PCE
		(V)	$\left(\mathrm{mA} \mathrm{cm}^{-2}\right)$	$(\%)$	$(\%)$
PM6:BTIC-4F	$1: 1$	0.91	17.65	45.8	7.35
	$1: 1.2$	0.91	18.98	46.82	8.08
	0.90	18.3	44.5	7.32	

Table S4. Photovoltaic parameters of OSCs based on PM6:BTIC-4F (D:A=1:1.2, wt/wt) blended films with different thermal annealing temperature, annealing time and amount of 1chloronaphthalene (CN) under the illumination of AM $1.5 \mathrm{G}, 100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$.

Active layer	TA	Additive	V_{oc} (V)	$\begin{gathered} \boldsymbol{J}_{\mathrm{sc}} \\ \left(\mathrm{~mA} \mathrm{~cm}^{-2}\right) \end{gathered}$	FF (\%)	$\begin{gathered} \text { PCE } \\ (\%) \end{gathered}$
PM6:BTIC-4F	$110{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	1	0.9	19.20	57.88	10.0
	$120{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	1	0.897	19.81	61.09	10.85
	$130{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	1	0.897	18.7	59.29	9.94
	$120{ }^{\circ} \mathrm{C}+5 \mathrm{~min}$	1	0.899	19.50	59.54	10.43
(1:1.2)	$120{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	1	0.897	19.81	61.09	10.85
	$120{ }^{\circ} \mathrm{C}+20 \mathrm{~min}$	1	0.89	18.72	60.16	10.02
	$120{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.25\% CN	0.896	19.7	64.3	11.32
	$120{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	$0.5 \% \mathrm{CN}$	0.894	20.5	65.7	12.04
	$120{ }^{\circ} \mathrm{C}+10 \mathrm{~min}$	0.75\% CN	0.89	20.1	65.1	11.64

Table S5. Hole and electron mobility in single-carrier devices for pure TPDC-4F, BTIC-4F film and for the PM6:TPDC-4F, PM6:BTIC-4F blend films.

Blends film	μ_{h}	μ_{e}	
$\left(\mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$	$\left(\mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}\right)$	$\mu_{\mathrm{h}} / \mu_{\mathrm{e}}$ ratio	
TPDC-4F	-	8.00×10^{-4}	-
BTIC-4F	-	6.63×10^{-4}	-
PM6:TPDC-4F	4.11×10^{-4}	4.06×10^{-4}	1.01
PM6:BTIC-4F	3.60×10^{-4}	2.78×10^{-4}	1.29

Table S6. Morphology data of PM6, TPDC-4F and BTIC-4F neat films and corresponding blended films.

	in plane (IP)						out of plane (OOP)				
Film	Position	D-spacing ${ }^{a}$	FWHM	CCL b	Position c	D-spacing a	FWHM	CCL b			
	$\left(\AA^{-1}\right)$	\AA	\AA	\AA	$\left(\AA^{-1}\right)$	\AA	\AA	\AA			
PM6	0.289	21.73	0.083	67.94	1.68	3.71	0.366	15.43			
TPDC-4F	0.392	16.02	0.189	29.84	1.73	3.60	0.348	16.20			
BTIC-4F	1.754	3.58	0.349	16.19	0.39	15.74	0.278	20.26			
PM6:TPDC-4F	0.297	21.14	0.051	109.74	1.73	3.61	0.316	17.88			
PM6:BTIC-4F	0.298	21.04	0.058	96.71	1.72	3.64	0.348	16.23			

[^0]Table S7. The representative device performance reported in the literatures for non-fused core electron acceptors.

Active layer	V_{oc} (V)	$\begin{gathered} J_{\mathrm{sc}} \\ \left(\mathrm{~mA} \mathrm{~cm}^{-2}\right) \end{gathered}$	$\begin{aligned} & F F \\ & (\%) \end{aligned}$	$\begin{gathered} \text { PCE } \\ (\%) \end{gathered}$	Ref.
PBDB-T:DF-PCIC	0.91	15.66	72.1	10.14	[6]
PBDB-T:DF-PCNC	0.86	18.16	72.6	11.63	[7]
PBDB-TF:HF-PCIC	0.91	11.78	70.7	11.49	[8]
PBDB-TF:HFO-PCIC	0.93	12.62	70.99	8.36	[8]
PBDB-TF:OF-PCIC	0.91	13.76	73.37	9.09	[8]
PBDB-TF:HF-TCIC	0.76	20.04	65	9.86	[9]
PBDB-TF:DF-TCIC	0.86	16.39	58	8.23	[9]
PBDB-T:FO-PCIC	0.90	15.02	61.12	8.32	[10]
PBDB-TF:HC-PCIC	0.89	18.13	72.1	11.75	[10]
PBDB-T:X-PCIC	0.84	21.8	62.5	11.5	[11]
PBDB-T:X1-PCIC	0.85	17.97	68.82	10.17	[11]
PBDB-T-2Cl:BTCIC-4Cl	0.75	21.0	66	10.5	[12]
PBDB-T:BDTS-4CI	0.83	9.8	45.9	3.73	[13]
PBDB-T:BDTC-4Cl	0.86	18.56	59.5	9.54	[13]
PBDB-T:BTOR-IC-4F	0.8	20.57	69.6	11.48	[14]
PBDB-T:BCDT-4F	0.80	18.28	66	9.65	[15]
PBDB-T:BCDT-4CI	0.76	23.77	67	12.10	[15]
PBDB-T:TPDCIC	0.83	18.16	67.1	10.12	[16]
PBDB-T:TPDCNC	0.80	17.4	70.4	9.80	[16]
PM7: BT2FIDT-4Cl	0.97	18.1	71.5	12.5	[17]
PM7: BO2FIDT-4Cl	0.96	16.1	61.3	10.4	[17]
PBDB-T:DOC2C6-2F	0.85	21.35	73.1	13.24	[18]
J52:UF-EH-2F	0.79	24.87	69	13.56	[19]
PBDB-T:BTzO-4F	0.83	23.58	69.73	13.8	[20]

PM6:BDC-4F-C8	0.895	21.32	65.71	12.53	[21]
PTB7-Th:SiOTIC-4F	0.65	21.6	61.4	9.0	[22]
PTB7-Th:COTIC-4F	0.56	20.3	56.3	7.4	[22]
PTB7-Th:CTIC-4F	0.70	23.4	64	10.5	[23]
PTB7-Th:CO1-4F	0.64	24.8	64	10.2	[23]
PBDB-T:PTIC	0.93	16.73	66	10.27	[24]
PBDB-T:CPDT-4F	0.68	20.1	69.6	9.47	[25]
PBDB-T:ITDI	0.94	13.94	59.78	8.0	[26]
PTB7:DTDFBT(TDPP) ${ }_{2}$	0.81	12.10	51	5.0	[27]
P:DPP8	0.90	13.78	58	7.19	[28]
P:MPU1	0.98	12.37	62	7.52	[29]
DTS(QxHTh2)2:MPU2	0.94	12.15	68	7.76	[30]
SMD:MPU3	0.98	13.72	67	9.14	[31]
J52:BN-2F	0.81	25.25	70.78	14.53	[32]
PBDB-T:PCBM-C10	0.87	21.30	72.66	13.55	[33]
PBDB-T:TPDC-4F	0.852	22.19	70.6	13.35	This work
PBDB-T:BTIC-4F	0.894	20.5	65.7	12.04	This work

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum of TPDC-4F $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Fig. S2 ${ }^{13} \mathrm{C}$ NMR spectrum of TPDC-4F $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{B T I C}-4 \mathbf{F}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Fig. S4 ${ }^{13} \mathrm{C}$ NMR spectrum of BTIC-4F $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Positive:

1 \#11-17 RT: 0.10-0.16 AV: 4 NL: 4.12E7 T
FTMS + p ESI Full ms [500.0000-2000.0000]

1\#15 RT: 0.14 AV: 1 NL: 4.81E4
T: FTMS + p ESI Full ms [500.0000-2000.0000]

> 1547.07851 $z=1$ $\mathrm{C}_{90} \mathrm{H}_{95} \mathrm{O}_{4} \mathrm{~N}_{5} \mathrm{~F}_{4} \mathrm{~S}_{5}=1547.07965$

Fig. S5 HRMS of TPDC-4F.

Positive:

2 \#8-12 RT: 0.08-0.10 AV: 2 NL: 1.34E8
T: FTMS + p ESI Full ms [500.0000-2000.0000]

[C94H97F4N5O4S6+H] ${ }^{+}$
2 \#9 RT: 0.08 AV: 1 NL• 5 94E5
T:FTMS + p ESI Full ms [500.0000-2000.0000]

Fig. S6 HRMS of BTIC-4F.

Fig. S7 Spatial structure models and HOMO/LUMO levels of TPDC-4F and BTIC-4F calculated by Gaussian 09 with density function theory (DFT) at the level of B3LYP/6-31G. The alkyl chains were replaced with methyl groups.

Fig. S8 Representative dihedral angles of TPDC-4F and BTIC-4F calculated by Gaussian 09 with density function theory (DFT) at the level of B3LYP/6-31G. The alkyl chains were replaced with methyl groups.

Acceptor	Chlorobenzene $(16 \mathrm{mg} / \mathrm{mL}$ in CB $)$	Chloroform $(20 \mathrm{mg} / \mathrm{mL}$ in CF $)$
TPDC-4F		

Fig. S9 The solubilities of TPDC-4F and BTIC-4F in chlorobenzene and chloroform solution at room temperature.

Fig. S10 TGA diagrams of TPDC-4F and BTIC-4F.

Fig. S11 DSC diagrams of TPDC-4F (a) and BTIC-4F (b).

Fig. S12 Normalized UV-vis absorption spectra of (a) TPDC-4F and BTIC-4F in solution (b)
PM6:TPDC-4F and PM6:BTIC-4F blend film.

Fig. S13 Cyclovoltammetry curves of ferrocene.

Fig. S14 Histogram of PM6:TPDC-4F and PM6:BTIC-4F solar cell efficiencies for 64 and 56 devices, respectively.

Fig. S15 $J-V$ curves of (a) PM6:TPDC-4F and (b) PM6:BTIC-4F in different scan directions.
(c) The stability of TPDC-4F- and BTIC-4F-based devices in a N_{2}-filled glovebox without encapsulation.

Fig. S16 The $J^{1 / 2}-V$ characteristics of the hole-only (a) and electron-only (b) devices based on the blend films PM6:TPDC-4F and PM6:BTIC-4F, and (c) The $J^{1 / 2}-V$ characteristic of the electron-only device based on the pure film of TPDC-4F and BTIC-4F.

Fig. S17 Dark $J-V$ characteristics of the photovoltaic devices of PM6:TPDC-4F and PM6:BTIC-4F.

Fig. S18 Tapping-mode AFM height images of (a) PM6:TPDC-4F, (b) PM6:BTIC-4F blend films and the corresponding phase images of (c) PM6:TPDC-4F, (d) PM6:BTIC-4F blend films. TEM images of (e) PM6:TPDC-4F and (f) PM6:BTIC-4F blend films. Scale bar: 200 nm

Fig. S19 (a) GIWAXS patterns of PM6 neat film. (b) out-of-plane (solid line) and in-plane (dotted line) line-cut profiles of PM6 film.
(a)

PBDB-T:DOC2C6-2F PCE $=13.24 \%$
$V_{\text {oc }}=0.85 \mathrm{~V}$
Nat. Commun., 2019, 10, 3038

J52:UF-EH-2F
PCE $=13.56 \%$
$V_{o c}=0.79 \mathrm{~V}$
Chem. Mater., 2020, 32, 2593-2604

PBDB-T:BTzO-4F
$\mathrm{PCE}=13.8 \%$
$V_{o c}=0.839 \mathrm{~V}$
Sci. China Chem., 2021, 64, 228-231

PBDB-T:PCBM-C10
$V_{o c}=0.87 \mathrm{~V}$
ACS Appl. Mater: Interfaces 2021, 13, 1603-1611

PM6:TPDC-4F
(b)

PCE=13.35\%
$V_{o c}=0.852 \mathrm{~V}$
This work

Fig. S20 (a) Chemical structure, power conversion efficiency (PCE over 13\%) and opencircuit voltage of the representative high-performance organic solar cell based on non-fused ring electron acceptors in the literature. (b) Molecular structure of non-fused ring acceptor TPDC-4F reported in this work.

References

[1] C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, and J. M. J. Fréchet, J. Am. Chem. Soc., 2010, 132, 7595-7597.
[2] X. Guo, N. Zhou, S. J. Lou, J. W. Hennek, R. P. Ortiz, M. R. Butler, P. L. Boudreault, J. Strzalka, P. O. Morin, M. Leclerc, J. T. López Navarrete, M. A. Ratner, L. Chen, R. P. Chang, A. Facchetti and T. J. Marks, J. Am. Chem. Soc., 2012, 134, 18427-18439.
[3] J. Yao, B. Qiu, Z. G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng and Y. Li, Nat. Commun., 2020, 11, 2726.
[4] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Adv. Mater., 2011, 23, 16791683.
[5] G. G. Malliaras, J. R. Salem., P. J. Brock and C. Scott, Phys. Rev. B., 1998, 58, 13411.
[6] S. Li, L. Zhan, F. Liu, J. Ren, M. Shi, C.-Z. Li, T. P. Russell and H. Chen, Adv. Mater., 2018, 30, 1705208.
[7] N. Wang, L. Zhan, S. Li, M. Shi, T.-K. Lau, X. Lu, R. Shikler, C.-Z. Li and H. Chen, Mater. Chem. Front., 2018, 2, 2006-2012.
[8] S. Li, L. Zhan, W. Zhao, S. Zhang, B. Ali, Z. Fu, T.-K. Lau, X. Lu, M. Shi, C.-Z. Li, J. Hou and H. Chen, J. Mater. Chem. A, 2018, 6, 12132-12141.
[9] R. Qin, W. Yang, S. Li, T.-K. Lau, Z. Yu, Z. Liu, M. Shi, X. Lu, C.-Z. Li and H. Chen, Mater. Chem. Front., 2019, 3, 513-519.
[10]S. Li, L. Zhan, C. Sun, H. Zhu, G.Zhou, W.ang, M. Shi, C.-Z. Li, J. Hou Y. Li and H. Chen, J. Am. Chem. Soc., 2019, 141, 3073-3082.
[11]S. Li, L. Zhan, T.-K. Lau, Z. P. Yu, W. Yang, T. R. Andersen, Z. Fu, C. Z. Li, X. Lu, M. Shi and H. Chen, Small Methods, 2019, 3, 1900531.
[12]S. Pang, X. Zhou, S. Zhang, H. Tang, S. Dhakal, X. Gu, C. Duan, F. Huang and Y. Cao, ACS Appl. Mater. Interfaces, 2020, 12, 16531-16540.
[13] Y.-Q.-Q. Yi, H. Feng, N. Zheng, X. Ke, B. Kan, M. Chang, Z. Xie, X. Wan, C. Li, and Y. Chen, Chem. Mater., 2019, 31, 3, 904-911.
[14]Y. Wang, Z. Wang, X. Cui, C. Wang, H. Lu, Y. Liu, Z. Fei, Z. Ma and Z. Bo, J. Mater. Chem. A, 2020, 8, 12495-12501.
[15]C. He, Y. Li, S. Li, Z. P. Yu, Y. Li, X. Lu, M. Shi, C.-Z. Li and H. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 16700-16706.
[16] S. Geng, W. Yang, J. Gao, S. Li, M. Shi, T.-K. Lau, X. Lu, C.-Z. Li and H. Chen, Chinese J. Polym. Sci., 2019, 37, 1005-1014.
[17]C. Chen, X. Chen, K. K. Liu, M. Zhang, J. Qu, C. Yang, G. Z. Yuan, A. Mahmood, F. Liu, F. He, D. Baran and J. Wang, Small, 2020, 16, 1907681.
[18]H. Huang, Q. Guo, S. Feng, C. Zhang, Z. Bi, W. Xue, J. Yang, J. Song, C. Li, X. Xu, Z. Tang, W. Ma and Z. Bo, Nat. Commun., 2019, 10, 3038.
[19]M. Chang, L. Meng, Y. Wang, X. Ke, Y.-Q.-Q. Yi, N. Zheng, W. Zheng, Z. Xie, M. Zhang, Y. Yi, H. Zhang, X. Wan, C. Li and Y. Chen, Chem. Mater., 2020, 32, 2593-2604.
[20]X. Liu, Y. Wei, X. Zhang, L. Qin, Z. Wei and H. Huang, Sci. China Chem., 2021, 64, 228-231.
[21]D. Luo, X. Lai, N. Zheng, C. Duan, Z. Wang, K. Wang and A. K. K. Kyaw, Chem. Eng. J., 2021, 420, 129768.
[22]J. Lee, S.-J. Ko, M. Seifrid, H. Lee, B. R. Luginbuhl, A. Karki, M. Ford, K. Rosenthal, K. Cho, T.-Q. Nguyen and G. C. Bazan, Adv. Energy Mater., 2018, 8, 1801212.
[23]J. Lee, S.-J. Ko, H. Lee, J. Huang, Z. Zhu, M. Seifrid, J. Vollbrecht, V. V. Brus, A. Karki, H. Wang, K. Cho, T.-Q. Nguyen and G. C. Bazan, ACS Energy Lett., 2019, 4, 1401-1409.
[24]Z.-P. Yu, Z-X. Liu, F.-X. Chen, R. Qin, T.-K. Lau, J.-L. Yin, X. Kong, X. Lu, M. Shi, C.Z. Li and H. Chen, Nat Commun., 2019, 10, 2152.
[25]K. Wang, J. Lv, T. Duan, Z. Li, Q. Yang, J. Fu, W. Meng, T. Xu, Z. Xiao, Z. Kan, K. Sun and S. Lu, ACS Appl. Mater. Interfaces, 2019, 11, 6717-6723.
[26]Z. Kang, S.-C. Chen, Y. Ma, J. Wang and Q. Zheng, ACS Appl. Mater. Interfaces, 2017, 9, 24771-24777.
[27]J. Jung and W. Jo, Chem. Mater., 2015, 27, 6038-6043.
[28] Y. Patil, R. Misra, M. L. Keshtovb and G. D. Sharma, J. Mater. Chem. A, 2017, 5, 3311.
[29]M. Privado, V. Cuesta, P. Cruz, M. L. Keshtov, R. Singhal, G. D. Sharmad and F Langa, ACS Appl. Mater. Interfaces, 2017, 9, 11739-11748.
[30]M. Privado, V. Cuesta, P. Cruz, M. L. Keshtov, G. D. Sharma and F Langa, J. Mater. Chem. A., 2017, 5, 14259-14269.
[31]M. Privado, P. Cruz, S. Biswas, R. Singhal, G. D. Sharma and F. Langa, J. Mater. Chem. $A, 2018,6,11714-11724$.
[32]X. Zhang, L. Qin, J. Yu, Y. Li, Y. Wei, X. Liu, X. Lu, F. Gao and H. Huang, Angew. Chem. Int. Ed., 2021, 60, 12475.
[33]Y. Zhou, M. Li, S. Shen, J. Wang, R. Zheng, H. Lu, Y. Liu, Z. Ma, J. Song and Z. Bo, ACS Appl. Mater. Interfaces, 2021, 13, 1603-1611.

[^0]: ${ }^{a}$ Obtained using the equation of $d=2 \pi / q$, in which q is the corresponding x-coordinate of the diffraction peak. ${ }^{b}$
 Calculated using the equation: $\mathrm{CCL}=2 \pi K / w$, in which w is the full width at half maxima and K is a form factor.

