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The synthesis of α-MnO2 nanowires
     The α-MnO2 nanowires were prepared by a typical hydrothermal method. First, 3 

mmol KMnO4 was dissolved in 30 mL deionized water by magnetic stirring. Then, 1 

mL HCl was added into the as-prepared solution and stirring continuously to form a 

homogeneous solution. Then, the solution was transformed into a 30 mL Teflon-lined 

stainless-steel autoclave and heated with a temperature of 140 ℃ for 12 hours. After 

cooling to room temperature, the products were collected by centrifugation, washed 

with water and ethanol several times, dried with 80 ℃ at the ambient condition 

overnight. The XRD pattern (Figure S15) and SEM images (Figure S16) confirmed the 

as-prepared products were α-MnO2 nanowires.

The capacitive contribution calculation

     The capacitive contributions can be obtained by integrating the CV curves at 

various sweep rates. The response current (i) at a fixed potential (V) is composed of 

two components: capacitive process (k1v) and diffusion process (k2v1/2), which can be 

shown as the equation:

                   i(V)= k1v + k2v1/2                   (1)

or

                   i(V)/v1/2=k1v1/2+k2                   (2)

Therefore, we can acquire the value of k1 and k2 by fitting the line of i/v1/2 versus 

v1/2. Then, the response current (k1v) resulted from the capacitive process can be 

calculated at every last potential. The capacitive contribution percentage can be 

calculated by convoluting the response current (k1v) and total response current (i).

The calculation of diffusion coefficients

The ion diffusion coefficients were acquired by GITT. The calculation method is 

based on the following equation:

         Dion= (4/πτ)*[nM VM/S]2[[ΔES/ΔEt]2             (3)

Where τ is the constant current pulse duration, nM and VM are the moles of 

CaMn3O6 and molar volume, respectively. S is the area of the electrode, and ΔEs and 

ΔEt are the change in the steady-state voltage and battery voltage.



Figure S1 XPS spectra of CMO@EG. (a)Ca 2p; (b) Mn 2p; (c) O 1s.
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Figure S2 EDX spectra of CMO@EG composites.
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Figure S3. (a)TEM image of CaMn3O6@EG; (b) FT-IR curve; (c) TG curve.
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Figure S4 (a) Discharge curves of CMO electrode in different electrolytes; (b) 
the XRD pattern in 1 M (CH3COO)2Zn + 0.1 M (CH3COO)2Mn at full 

discharge state.
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Figure S5 Cycling performance of CMO@EG cathode in 2 M ZnSO4 and 2 M 
ZnSO4 + 0.1 M MnSO4 at 0.2 A/g, respectively.
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Figure S6 the GCD profiles of α-MnO2 at different current densities from 0.2 
to 6 A/g.



Figure S7 The corresponding capacitive contribution of CMO@EG cathode after 6 
cycles at 0.6 mV/s
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Figure S8 Comparsion of charge transfer resistance (Rct) values of CMO@EG in 
different cycles (full charge), inset is the equivalent circuit applied for ESI fitting.



Figure S9 (a) and (b) SEM images of origin electrode.
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Figure S10 (a) and (b) SEM images of CMO@EG electrode at second full 
discharge state.

Zn4SO4(OH)6·5H2O
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Figure S11 (a) and (b) SEM images of CMO@EG electrode at second full charge 
state.
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Figure S12. The XRD patterns of CMO@EG electrodes at different state at 2nd 
cycle.



Figure S13 the ex-situ XPS spectra of origin, first full charge/discharge and second 
full charge/discharge states, (a) Mn 2p3/2, (b) O 1s.
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Figure S14. The XRD patterns of CMO@EG electrodes at different state at 10th 
cycle.



Figure S15 STEM image (a) and HRTEM image of CMO electrode at full charge 
state after 10 cycles 

(a) (b)



Figure S16 STEM-EDX images of CMO electrode at full charge state after 10 
cycles 



Figure S17 TEM image (a) and HRTEM image (b) of CMO electrode at full 
discharge state after 10 cycles 

(a) (b)



Figure S18 STEM-EDX images of CMO electrode at full charge state after 10 
cycles 



Figure S19 (a) and (c) SEM and TEM images of CMO electrode at full charge state after 
100 cycles; (b) and (d) SEM images of CMO electrode at full charge state after 100 cycls, 
the inset of (b) is corresponding EDX spectrum.
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Figure S20 XRD pattern of α-MnO2 nanowires.



Figure S21 SEM images of α-MnO2 nanowires.

400 nm1 μm



Table S1 Comparison of the electrochemical performance of CMO@EG cathode with 

other reported Mn-based cathodes for AZIBs.

cathode Voltage 
window

electrolyte Specific 
capacity

Long-term performance Ref.

MnS-EDO 0.8-2.0 V
2 M ZnSO4 +
0.1 M MnSO4

360 mAh/g 
at 0.3 A/g

104 mAh/g retained after 
4000 cycles at 3.0 A/g

[1]

MnO@C 0.9 -1.8 V
2 M ZnSO4+
0.2 M MnSO4

288 mAh/g 
at 0.1A/g

98% retained after 300 
cycles at 0.5A/g

[2]

δ-MnO2 1.0 -1.8 V

1 M 
Zn(TFSI)2 + 
0.1 M 
Mn(TFSI)2

238 mAh/g 
at 0.2C

93% capacity retention 
after 4000 cycles at 20 C

[3]

Cation-
Deficient 
ZnMn2O4

0.8 - 2.0 V 3M 
Zn(CF3SO3)2

150 mAh/g
at 50 mA/g

94 % retained after
500 cycles at 0.5A/g

[4]

oxygen-
deficient
MnO2

1.0-1.8 V 1 M ZnSO4 + 
0.2 M MnSO4

345 mAh/g 
at 0.2 A/g.

94% capacity retention 
after 100 cycles at 0.2A/g

[5]

K0.8Mn8O16

0.8-1.8 V 2 M ZnSO4 +
0.1 M MnSO4

320 mAh/g 
at 0.1A/g

1000 cycles with no 
obvious capacity fading 
at 1A/g

[6]

K1.33Mn8O16

1.0 -1.8 V 2 M ZnSO4 +
0.1 M MnSO4

312 mAh/g 
at  C/10

more than 80% of initial 
capacity after 650 cycles 
at 5C

[7]

Ni2+ doping 
Mn2O3

0.8-1.8 V 2 M ZnSO4 252 mAh/g  
at 0.1 A/g

≈85.6% over 2500 cycles 
at 1.0 A/g

[8]

Superfine MnO2 
nanowires

1.0-1.9 V 2 M ZnSO4 +
0.1 M MnSO4

388 mAh/g 
at 0.6 A/g

negligible deterioration 
after 1000 cycling tests at 
1.0 A/g

[9]

Co doping 
Mn3O4

0.2-2.2 V 2 M ZnSO4 +
0.2 M MnSO4

362 mAh/g 
at 0.1 A/g

80% retention after 1100 
cycles at 2.0A/g

[10]

Od-Mn3O4 @C 
NA/CC

0.2-1.85 V 2 M ZnSO4 +
0.2 M MnSO4

396.2 mAh/g 
at 0.2 A/g

95.7% of the initial 
capacity after 12000 
cycles at 5A/g

[11]

Mg2MnO4

0.4-1.9 V 2 M ZnSO4 +
0.1 M MnSO4

371.7 mAh/g 
at 0.15A/g

no obvious capacity 
fading after 2000
cycles at 3 A/g

[12]

K0.28MnO2·
0.1H2O

0.4-1.9 V 3M ZnSO4 +
0.2M MnSO4

300 mAh/g 
at 0.1A/g

95% capacity retention 
after 1000 cycles at 2 A/g

[13]

LiMn2O4

0.8-1.9 V 1 M ZnSO4+
1 M Li2SO4+
0.1 M MnSO4

300 mAh/g 
at 0.1 A/g

93.5% retention after 
1500 cycls at 1A/g

[14]



δ-MnO2
0-2.0 V 2 M ZnSO4 +

0.1 M MnSO4
330 mAh/g 
at 1.5 
mA/cm2

100% capacity retention
after 6000 cycles at 5 
mA/ cm2.

[15]

Ca0.28MnO2·
0.5H2O

0.4-1.9 V 1 M ZnSO4 +
0.1 M MnSO4

298 mAh/g 
at 0.175A/g

5000 cycles with no 
obvious capacity fading

[16]

SSWM@Mn3O4
1.0-1.8 V 2 M ZnSO4 + 

0.1M MnSO4

296 mAh/g 
at 0.1A/g

500 cycles at 0.5A/g [17]

Mn-defect 
MnO

0.8-1.8 V 2 M ZnSO4 + 
0.1 M MnSO4

300 mAh/g 
at 0.1 A/g

116 mAh/g at 1 A/g after 
1500 cycles.

[18]

Ca2MnO4
0.8-1.8 V 2 M ZnSO4 + 

0.1 M MnSO4

250 mAh/g 
at 0.1 A/g 

no obvious fluctuation 
for 1000 cycles at 1A/g

[19]

6.0 Nanometer 
SpinelNanodot

0.9-1.9 V 2 M ZnSO4 +
0.2 M MnSO4

386.7 mAh/g 
at 0.1 A/g

500 cycles at 0.5 A/g [20]

α-MnO2 0.8-1.8 V
2 M ZnSO4 + 
0.1 M MnSO4 
in palygorskite

290 mAh/g 
at 0.2 A/g

100% retention after 
1000 cycles at 1 A/g

[21]

CMO@EG

0.6-1.9 V 2 M ZnSO4+
0.1 M MnSO4

521.7 mAh/g 
at 0.2 A/g

100% capacity retention 
after 2350 cycles at 2A/g, 
75% after extra 17000 
cycles at 5A/g
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