Characterization of the interfacial Li-ion exchange process in a ceramic-polymer composite by solid state NMR

Pierre Ranque,a Jakub Zagórski,a,b Shanmukaraj Devaraj,a Frédéric Aguesse,a Juan Miguel López del Amo*a

a Centro de Investigación Cooperativa de Energías Alternativas (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.

b University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940 Leioa, Spain.

Keywords: Li-ion exchange, composite electrolyte, solid-state NMR, solid-state batteries, LLZO, interface.
X-ray diffraction of Ga-substituted LLZO (Li$_{6.55}$Ga$_{0.15}$La$_3$Zr$_2$O$_{12}$)

Fig. S1 XRD of the pure cubic Ga-substituted LLZO (Li$_{6.55}$Ga$_{0.15}$La$_3$Zr$_2$O$_{12}$) powder.

Deconvolution of 1D 7Li spectrum

Fig. S2 Deconvolution of 7Li 1D spectrum. More than two components are necessary to fit the LLZO peak.
Supporting Information

1H-7Li HETCOR of the pristine LLZO powder

In order to unequivocally demonstrate the correct assignment of the 1H resonance at 4 ppm in the 1H-7Li HETCOR correlation shown in Fig. 2b, a similar experiment was performed in a sample containing pure LLZO (no PEO:LiTFSI). The result of such experiment is shown in Fig. S3. This spectrum clearly shows the presence of two main resonances that are assigned to H at LiOH and to protons inside the LLZO structure coexisting with Li-ion. The presence of this signal in a sample without PEO clearly excludes the possibility of this correlation being originated from PEO to LLZO coupling. This result is also in agreement with the NMR characterization of a partially hydrated LLZO sample by Bernuy-Lopez et al., Chem. Mater. 2014, 26 (12), 3610-3617.

![Fig. S3 1H-7Li HETCOR of the pristine LLZO powder.](image)
Supporting Information

Curve fitting results of cross-peaks intensities vs. mixing time from 7Li-7Li EXSY (1.3 mm rotor)

Table S1 1.3 mm rotor 7Li-7Li EXSY fitting results.

<table>
<thead>
<tr>
<th>Model</th>
<th>ExpDec1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation</td>
<td>$y = A_1 \exp(-x/t) + y_0$</td>
</tr>
<tr>
<td>Reduced Chi-Sqr</td>
<td>5.4299E-4</td>
</tr>
<tr>
<td>Adj. R-Square</td>
<td>0.98769</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_0</td>
<td>1.00155</td>
<td>0.02067</td>
</tr>
<tr>
<td>A_1</td>
<td>-0.56144</td>
<td>0.02554</td>
</tr>
<tr>
<td>t</td>
<td>0.03557</td>
<td>0.00477</td>
</tr>
<tr>
<td>k</td>
<td>28.1098</td>
<td>3.7679</td>
</tr>
<tr>
<td>τ</td>
<td>0.02466</td>
<td>0.00331</td>
</tr>
</tbody>
</table>

Estimation of the time necessary to have an efficient Li-ion mobility within the composite electrolyte via EIS

The bulk conductivity of the composite electrolyte (i.e. the resistance-capacitance semi-circle visible at high frequencies) is observed between 1 MHz and 5000 Hz in our EIS measurements, as shown Fig. S4. From these frequency values, it is possible to estimate the time necessary to have an efficient Li-ion mobility within the composite. In this case, at room temperature, we calculated the time taken to participate in the bulk conductivity of the composite as 0.2 ms ($1/5000 = 0.0002$), which is more rapid than the time taken for the spontaneous exchange at the interface (150 ms), as obtained from NMR studies.
Supporting Information

Fig. S4 EIS spectrum of a PEO:LiTFSI + 10 vol% LLZO composite membrane at room temperature. The bulk conductivity is observed at frequencies above 5000 Hz.