Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

# Enhancing interfacial charge transfer in WO<sub>3</sub>/BiVO<sub>4</sub> photoanode heterojunction through gallium and tungsten co-doping and sulfur modified Bi<sub>2</sub>O<sub>3</sub> interfacial layer

Umesh Prasad<sup>1,2</sup>, James L. Young<sup>2</sup>\*, Justin C. Johnson<sup>2</sup>, Deborah L. McGott<sup>2,3</sup>, Hengfei Gu<sup>4</sup>, Eric Garfunkel<sup>4</sup> and Arunachala M. Kannan<sup>1</sup>\*

<sup>1</sup>The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, Mesa, AZ 85212, USA

<sup>2</sup>National Renewable Energy Laboratory, Golden, CO 80401, USA

<sup>3</sup>Colorado School of Mines, Golden, CO, 80401, USA

<sup>4</sup>Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA

\*Corresponding Author: Email <u>amk@asu.edu, james.young@nrel.gov</u>

#### **Section 1: Calculation processes**

#### **Photoelectrochemical measurements**

The reference electrode potential was converted to reverse hydrogen electrode (RHE) by the relationship given in (equation (1)).

$$E_{RHE} = E_{Ag/AgCl}^{0} + E_{Ag/AgClSCE} + 0.059 \, pH \tag{1}$$

Where 
$$E_{Ag/AgCl}^{0} = 0.1976 V vs. RHE, at 298 K$$

# Process of theoretical photocurrent (J<sub>theoretical</sub> calculation)

The light-harvesting efficiency (LHE) or absorption efficiency ( $\phi_{abs}$ ) relationship is show in (equation (2))

$$LHE = 1 - 10^{-A(\lambda)} = \phi_{abs} \tag{2}$$

Where A is absorbance with wavelength ( $\lambda$ )

The absorption efficiency was calculated by integrating absorption spectra from wavelength 300 to 550 nm for all samples.

Further, photon energy and photon flux calculated from AM1.5G solar irradiance with wavelength as given in Figure S1b by following relation (equation (3-5)).

$$E(\lambda) = h \times C/\lambda \tag{3}$$

Where,  $E(\lambda)$ : photon energy h: Plank constant C: speed of the light

Number of photons = 
$$h \times C/\lambda$$
 (4)

Photons flux 
$$(\phi(\lambda)) = P(\lambda)/E(\lambda)$$
 (5)

The above-calculated data, theoretical photocurrent was calculated assuming 100% incident to photon conversion efficiency (IPCE) and by the following relationship.<sup>1,2</sup>

$$J_{theoretical} = \int_{\lambda_1}^{\lambda_2} e^{-x} \phi(\lambda) \times LHE \times d\lambda$$
(6)

# Charge transport calculation: bulk and surface

Major losses in theoretical photocurrent are electron-hole recombination in the bulk and at the surface, which are known as charge separation ( $\phi_{sep}$ ) and charge transfer or charge injection efficiency ( $\phi_{trans}$ ), by relationship equation (7 and 8).

$$J_{H_2O} = J_{theoretical} \times \phi_{sep} \times \phi_{trans} \tag{7}$$

The transfer efficiency is almost 100% in the presence of hole scavengers, given by relationship equation (10).<sup>2</sup>

$$J_{Na_2SO_3} = J_{theoretical} \times \phi_{sep} \tag{8}$$

Using equation (7 and 8) the  $\phi_{sep}$  and  $\phi_{trans}$  can be calculated

# **IPCE calculation**

The IPCE was measured by the relationship given in equation (9)

$$IPCE = \frac{Number of electrons}{Number of photons} = \frac{J_{monochromator} \times h \times C}{P_{monochromator} \times \lambda}$$
(9)

### **Integrated current calculation**

Integrated current (J<sub>integrated</sub>) was calculated using the relationship given in eq (10)

$$J_{Integrated} = \int_{\lambda_1}^{\lambda_2} e^{-} \times \phi(\lambda) \times IPCE \times LHE \times d\lambda \tag{10}$$





Figure S1. Chopped light J-V plot for 1- 6 wt % Ga-doped BiVO<sub>4</sub> in KPi electrolyte. (b) Fabrication steps of  $WO_3/S:Bi_2O_3/(Ga,W):BiVO_4$  sample.



Figure S2. J-V plots under simulated AM 1.5G illumination in KPi for (a) WO<sub>3</sub>/doped BiVO<sub>4</sub> photoanodes, (b) different layers of Bi<sub>2</sub>O<sub>3</sub> with WO<sub>3</sub>/doped BiVO<sub>4</sub>, (c) heterojunction between S:Bi<sub>2</sub>O<sub>3</sub> and doped BiVO<sub>4</sub>.

# **Section 3: Photocurrent measurements of hole scavengers**

The photocurrent was also measured with a hole scavenger (Na<sub>2</sub>SO<sub>3</sub>), where the electron-hole

recombination is considered almost negligible.1

<sup>1</sup> As observed from Figure S3, WO<sub>3</sub>/S:Bi<sub>2</sub>O<sub>3</sub>/(Ga,W):BiVO<sub>4</sub> exhibited the highest photocurrent of  $6.4\pm0.3 \text{ mA.cm}^{-2}$  compared to  $5.86\pm0.3 \text{ and } 5.4\pm0.28 \text{ mA.cm}^{-2}$  for WO<sub>3</sub>/Bi<sub>2</sub>O<sub>3</sub>/(Ga,W):BiVO<sub>4</sub> and

WO<sub>3</sub>/(Ga,W):BiVO<sub>4</sub> photoanodes, validating the significance of implementing an interfacial layer S:Bi<sub>2</sub>O<sub>3</sub>.



Figure S3. J-V plots under 1 sun illumination for photoanodes with WO<sub>3</sub> heterojunction and Bi<sub>2</sub>O<sub>3</sub> interface layer with and without sulfur modification in KPi with hole scavenger (1M Na<sub>2</sub>SO<sub>3</sub>).

### Section 4: Mott Schottky and flat-band calculation

Mott-Schottky estimated flat band (onset) potential–Schottky at 1 kHz in the dark with AC amplitude of 20 mV at 1.23 V vs RHE in  $0.1 \text{ M K}_2\text{HPO}_4$  electrolyte (pH 7.5) by the relationship given in equation (12).<sup>1</sup>

$$\frac{1}{C^2} = \frac{2}{(\varepsilon \varepsilon_0 A^2 e N_D)} \left( V_{app} - V_{FB} - \frac{K_B T}{e} \right)$$
(12)

Where C is the capacitance in space charge region;  $\varepsilon$  is relative permeability which is taken as<sup>3</sup> for the calculation;  $\varepsilon_0$  is vacuum permeability (8.8 ×10<sup>-12</sup> F m<sup>-1</sup>); A (cm<sup>2</sup>) is the area of the photoanode thin film; e is the charge of an electron (1.602 × 10<sup>-19</sup> C); N<sub>D</sub> is the number of charge carrier per cm<sup>-3</sup>, estimated from Mott-Schottky measurement plot (Table S1); V<sub>app</sub> (in RHE) is the applied potential; V<sub>FB</sub> is the flat band potential measured from Mott-Schottky plot; K<sub>B</sub> is

Boltzmann constant (1.38  $\times$  10-23 J K<sup>-1</sup>); T (K) is the temperature at which the measurement is performed (298 K).

Mott-Schottky measurements were performed in the frequency range of 0.7 - 2.8 kHz in the dark (Figure S4 a-d). Mott-Schottky measurements demonstrated the cathodic shift (Figure S4e) in the flat-band potential compared to the i-BiVO<sub>4</sub> that signified the reduced surface recombination.<sup>3</sup> The cathodic shifts in the flat-band potentials were 158, 202 and 209 mV, whereas corresponding shifts in the onset potentials for photocurrent were 380, 410 and 440 mV (Figure S4f) for WO<sub>3</sub>/(Ga,W):BiVO<sub>4</sub>, WO<sub>3</sub>/Bi<sub>2</sub>O<sub>3</sub>/(Ga,W):BiVO<sub>4</sub> and WO<sub>3</sub>/S:Bi<sub>2</sub>O<sub>3</sub>/(Ga,W):BiVO<sub>4</sub> photoanodes compared to i- BiVO<sub>4</sub>. There were further 91 mV cathodic shift noticed on Co-Pi deposition for WO<sub>3</sub>/S:Bi<sub>2</sub>O<sub>3</sub>/(Ga,W):BiVO<sub>4</sub>/Co-Pi photoanodes. The slight difference in onset potential and flatband potential could be due to the rate limitation in charge transfer to photoanode surface/electrolyte interface and recombination in space charge layer.<sup>4</sup> As shown in Figure S4e (inset), the shift in the CB edge for WO<sub>3</sub>/S:Bi<sub>2</sub>O<sub>3</sub>/(Ga,W):BiVO<sub>4</sub> photoanode was much closer to the  $H_2$  evolution potential (0  $V_{RHE}$ ), lessening the overpotential for driving hydrogen evolution reaction (HER) but increasing that available for driving the more difficult oxygen evolution reaction (OER), which provides a more favorable balance for the overall water splitting kinetics. The flat band was assumed to be equal to the CB edge, a good approximation for highly doped photoanodes.<sup>5</sup> The CB edge shift (Figure S4e: inset, Table S1) was more pronounced due to Ga and W co-doping and even more substantial with heterojunction formation and S modification. The frequency dependency of the Mott-Schottky data was verified by conducting additional Mott-

Schottky analysis at frequency values of 0.5, 1 and 2 kHz<sup>4,6,7</sup> in 0.1 M K<sub>2</sub>HPO<sub>4</sub> electrolyte in the dark (see Figures S4 a-d) for i-BiVO<sub>4</sub>, WO<sub>3</sub>/(Ga,W):BiVO<sub>4</sub>, WO<sub>3</sub>/(Ga,W):BiVO<sub>4</sub> and

 $WO_3/S:Bi_2O_3/(Ga,W):BiVO_4$  photoanodes. As seen from these figures, the x-axis intercepts were close for all frequencies. The frequency dependency was also validated on real and imaginary impedance values. As seen from Figure S4 (g and h), the real impedance was unaffected with the change in frequency values, but the imaginary impedance showed log-log dependency with the slope value of -0.88±-0.15. High frequencies were selected in order to have a smaller time scale, which can abstain from the sufficient filled and vacant surface states or buildup of a double layer capacitance.<sup>8</sup>



Figure S4. Mott-Schottky analysis in KPi electrolyte measured in the dark at different frequencies of (a)  $BiVO_4$ , (b)  $WO_3/(Ga,W)$ : $BiVO_4$  (c)  $WO_3/Bi_2O_3/(Ga,W)$ : $BiVO_4$ , and (d)  $WO_3/S$ : $Bi_2O_3/(Ga,W)$ : $BiVO_4$  photoanodes. (e) Mott-Schottky analysis in KPi electrolyte measured in the dark (inset: the shift in the CB edge) for photoanodes with  $WO_3$  heterojunction and  $Bi_2O_3$  interface layer with and without sulfur modification. (f) photocurrent onset measurement in KPi under Simulated AM 1.5G illumination. Frequency-dependent relationship of (g) real and (h) imaginary impedance.

#### Section 5: Absorption, charge separation and transport

Figure S5c shows charge separation ( $\phi_{sep}$ ) and hole transfer efficiencies ( $\phi_{trans}$ ), where it is seen that the Ga doped sample demonstrated better  $\phi_{sep}$  (38%) compared to i-BiVO<sub>4</sub> (26%), likely due to improved conductivity and increased charge carrier concentration (Table S1). Likewise, the codoped sample (Ga,W):BiVO<sub>4</sub> exhibited better charge separation (66%) compared to W:BiVO<sub>4</sub> (62%). This is possibly due to the cumulative effect of W and Ga where Ga acts as an electron donor, forming a diffusion path that reduces recombination of photogenerated charge carriers.<sup>2,9</sup> Correspondingly,  $\phi_{\text{trans}}$  in Figure S5d follows a similar trend to that of  $\phi_{\text{sep}}$  where (Ga,W):BiVO<sub>4</sub> samples exhibit the highest charge transfer rate (51%) compared to W:BiVO<sub>4</sub> (35%), Ga:BiVO<sub>4</sub> (16%) and BiVO<sub>4</sub> (8.4%) samples. The calculated  $\phi_{sep}$  and  $\phi_{trans}$  for the heterojunction based sample  $WO_3/S:Bi_2O_3/(Ga,W):BiVO_4$  (Figure S5e and f) demonstrated the highest  $\phi_{sep}$  (95%) compared to  $WO_3/Bi_2O_3/(Ga,W):BiVO_4$  (89%) and WO<sub>3</sub>/(Ga,W):BiVO<sub>4</sub> (87%). Correspondingly, the obtained  $\phi_{\text{trans}}$  for WO<sub>3</sub>/S:Bi<sub>2</sub>O<sub>3</sub>/(Ga,W):BiVO<sub>4</sub> photoanode was highest  $\phi_{\text{trans}}$  (80%) compared to WO<sub>3</sub>/Bi<sub>2</sub>O<sub>3</sub>/(Ga,W):BiVO<sub>4</sub> (65%) and WO<sub>3</sub>/(Ga,W):BiVO<sub>4</sub> (53%). This validates that using the S:Bi<sub>2</sub>O<sub>3</sub> interfacial layer can facilitate photogenerated charge separation and act as a blocking layer for holes generated in BiVO<sub>4</sub> absorber layer. In this case, electrons generated in the BiVO<sub>4</sub> can rapidly transport to the charge collector which reduces the probability of electrons becoming trapped at recombination sites. In parallel, holes can readily transfer to the reaction surface for water splitting.



Figure S5. (a) Absorption spectra (inset: absorption efficiency), (b) bandgap, (c) charge separation efficiency ( $\phi_{sep}$ ) and (d) charge transfer efficiency ( $\phi_{trans}$ ) for all doped photoanodes. (e) charge separation efficiency ( $\phi_{sep}$ ) and (f) charge transfer efficiency ( $\phi_{trans}$ ) for photoanodes with WO<sub>3</sub> heterojunction and Bi<sub>2</sub>O<sub>3</sub> interface layer with and without sulfur modification.



Section 6: Scanning electron microscopy of BiVO<sub>4</sub>, WO<sub>3</sub>, Bi<sub>2</sub>O<sub>3</sub> and FTO substrate

Figure S6. Surface morphology of (a) i-BiVO<sub>4</sub>, (b) WO<sub>3</sub>, (c)  $Bi_2O_3$ . (d) Cross-sectional image of FTO coating on the glass substrate.

#### Section 7: XRD

The phase identification, purity and crystal structure of all fabricated thin films were examined using XRD (PANalytical X'Pert PRO MRD; Cu Kα radiation; 0.006 degrees per sec). The crystal structure was determined using XRD analysis for intrinsic and doped BiVO<sub>4</sub>, Bi<sub>2</sub>O<sub>3</sub> and WO<sub>3</sub> in Figure S7a. It was noticed that all characteristic peaks of BiVO<sub>4</sub> were matched with standard PDF #014-0688 and confirmed the clinobisvanite (monoclinic scheelite) structure. However, there were no doping-oriented peaks identified after 4 wt% Ga and 1.3 wt% W doping in BiVO<sub>4</sub>, which validated that doping did not make any changes in the crystal structure/space group of BiVO<sub>4</sub>.

 $Bi_2O_3$  was identified to have a tetragonal phase with standard PDF # 18-0244 whereas WO<sub>3</sub> had a monoclinic form with standard PDF # 43-1035. In the next step, XRD analysis was conducted for heterojunction samples in Figure S7b. The individual peaks of WO<sub>3</sub>,  $Bi_2O_3$  and  $BiVO_4$  were identified and confirmed the successful formation of a heterojunction without any complex phases. There were no S oriented peaks identified, possibly due to the small amount of S in the film  $WO_3/S:Bi_2O_3/(Ga,W):BiVO_4$ .



Figure S7. XRD analysis of (a)  $WO_3$ ,  $Bi_2O_3$ ,  $BiVO_4$  and (Ga, W):  $BiVO_4$  and (b) photoanodes with  $WO_3$  heterojunction and  $Bi_2O_3$  interface layer with and without sulfur modification.

#### Section 8: XPS

XPS was employed to determine the oxidation state of Bi, V, W, Ga and O in the WO<sub>3</sub>/S:Bi<sub>2</sub>O<sub>3</sub>/(Ga,W):BiVO<sub>4</sub> sample. From Figures S8a-e, the major peaks for Bi  $4d_{3/2}$  (467.5 eV), Bi  $4d_{5/2}$  (443.8 eV), Bi  $4f_{5/2}$  (167.7 eV), Bi  $4f_{7/2}$  (159.4 eV), V  $2p_{1/2}$  (524.4 eV), V  $2p_{3/2}$  (516.9 eV), W  $4f_{5/2}$  (38.9 eV), W  $4f_{1/2}$  (35.9 eV), Ga  $2p_{1/2}$  (1144.7 eV), Ga  $2p_{3/2}$  (1118 eV) were observed and attributed the oxidation states as +3 and +5, +6 and +3 for Bi, V, W and Ga, respectively. XPS spectra in the O 1s in Figure S8f illustrates the nominal oxidation state of O (-2) with lattice oxygen (V–O) at 530 eV, and the shoulder at 531 eV confirmed the surface-adsorbed oxygen (–OH). No







Figure S8. XPS surface spectra of (a) Bi 4d, (b) Bi 4f, (d)V 2p, (e)W 4f, (f) Ga 2p and (g) O 1s. (g) XPS depth profiling spectra for S 2s. (h) Prepared samples for the XPS surface analysis to determine the state of sulfur.

#### **(a) Film fabrication steps** S-treated (Ga,W):BiVO<sub>4</sub> WO<sub>3</sub>/S:Bi<sub>2</sub>O<sub>3</sub>/WO<sub>3</sub>/S:Bi<sub>2</sub>O<sub>3</sub>/ S-dip WO<sub>3</sub> WO<sub>3</sub>/Bi<sub>2</sub>O<sub>3</sub> WO3/Bi2O3 WO3/Bi2O3 deposition on (Ga,W):BiVO<sub>4</sub> (Ga,W):BiVO<sub>4</sub> WO<sub>3</sub>/S:Bi<sub>2</sub>O<sub>3</sub> Complete Short (WO<sub>3</sub>/S:Bi<sub>2</sub>O<sub>3</sub>) WO<sub>3</sub>/S:Bi<sub>2</sub>O<sub>3</sub>/ (Ga,W):BiVO<sub>4</sub> annealing annealing (5 min at 500°C) (2 h at 500°C) Control (No annealing) **(b)** (c) $10^4$ νØ 10<sup>4</sup> Intensity (counts) 10<sup>3</sup> Vo Intensity (counts) 10 GaÖ Bi Gar $10^{2}$ 10<sup>1</sup> 10<sup>1</sup> (Ga,W):BiVO4 W):Bi S:Bi<sub>2</sub>O WO S:Bi<sub>2</sub>O<sub>3</sub> WO **10**<sup>0</sup> 10<sup>0</sup> 2000 1000 0 500 1500 2500 1000 2000 3000 4000 0 Sputter Time (s) Sputter Time (s) (d) Wo. **10<sup>4</sup>** Vr Bi Intensity (counts) GaO **10<sup>3</sup> 10<sup>2</sup> 10<sup>1</sup>** S:Bi<sub>2</sub>O<sub>3</sub> WO<sub>3</sub> $10^{0}$ 3000 4000 5000 0 1000 2000 6000 Sputter Time (s)

Section 9: TOF-SIMS depth profiling

Figure S9. (a) Process of prepared samples for depth profiling in three distinct environments. Negative polarity time of flight secondary ion mass spectroscopy (TOF-SIMS) analysis of sample  $WO_3/S:Bi_2O_3/(Ga,W):BiVO_4$  in three distinct environments (b) control (no annealing), (c) short annealing (5 min at 500°C) and (d) complete annealing (2h at 500°C) for Bi<sup>-</sup>, VO<sup>-</sup>, WO<sup>2-</sup>, GaO<sup>-</sup>,

 $S^{-}$ ,  $F^{-}$ ,  $Sn^{-}$  and  $Si^{-}$  species. Note the substrate signals appear midway through the film due to the poor depth resolution of the profiles, owing to the roughness of the films at the start of profiling



Section 10: Randles circuits and reproducibility validation

Figure S10. (a) and (b) Randles circuit for calculating  $R_{surface}$ ,  $R_{bulk}$ ,  $C_{surface}$  and  $C_{bulk}$ . (c)  $R_{tot}$  calculated by  $\left(\frac{dI}{dV}\right)^{-1}$  and fitting was done using GaussMod function in OriginPro 2020.



Figure S11. J-V plot after stability measurement for reproducibility validation of photoanodes with WO<sub>3</sub> heterojunction and Bi<sub>2</sub>O<sub>3</sub> interface layer with and without sulfur modification.

# Tables

| Photoanode                     | PCD<br>(mA.cm <sup>-2</sup> ) | Band<br>Gap<br>(eV) | Current<br>onset<br>(V) | Flat band<br>Potential<br>(V) | Charge carrier<br>density<br>(cm <sup>-3</sup> ) |  |
|--------------------------------|-------------------------------|---------------------|-------------------------|-------------------------------|--------------------------------------------------|--|
| WO <sub>3</sub>                |                               | 2.71                |                         |                               |                                                  |  |
| Bi <sub>2</sub> O <sub>3</sub> |                               | 2.8                 |                         |                               |                                                  |  |
| i-BiVO <sub>4</sub>            | $0.25 \pm 0.01$               | 2.42                | 0.23                    | 0.25                          | 2.8916E+19                                       |  |
| Ga:BiVO <sub>4</sub>           | $0.4 \pm 0.02$                | 2.39                | 0.18                    | 0.21                          | 9.62267E+19                                      |  |
| W:BiVO <sub>4</sub>            | $1.02 \pm 0.04$               | 2.41                | 0.11                    | 0.18                          | 1.04236E+20                                      |  |
| (Ga,W):BiVO <sub>4</sub>       | $1.68\pm0.1$                  | 2.38                | 0.07                    | 0.15                          | 1.04236E+20                                      |  |

Table S1: Result summary: WO3, Bi2O3, intrinsic and modified BiVO4

Table S1b: Result summary: heterojunction samples, Bi<sub>2</sub>O<sub>3</sub> layer without and with sulfur.

| Photoanode                                                                | PCD<br>(mA.cm <sup>-2</sup> ) | PCD in<br>Hole<br>scavang<br>er<br>(mA.c<br>m <sup>-2</sup> ) | Current<br>onset<br>(V) | Flat band<br>Potential<br>(V) | Charge carrier<br>density<br>(cm <sup>-3</sup> ) | IPCE<br>(%) |
|---------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|-------------------------|-------------------------------|--------------------------------------------------|-------------|
| WO <sub>3</sub> /(Ga,W):BiVO <sub>4</sub>                                 | 2.8±0.12                      | 5.4±0.2<br>6                                                  | -0.15                   | 0.092                         | 1.14522E+20                                      | 43.2        |
| WO <sub>3</sub> /Bi <sub>2</sub> O <sub>3</sub> /(Ga,W):BiVO <sub>4</sub> | 3.27±0.15                     | 5.86±0.<br>28                                                 | -0.18                   | 0.048                         | 1.26141E+20                                      | 53.5        |
| WO3/S:Bi <sub>2</sub> O <sub>3</sub> /(Ga,W):BiVO <sub>4</sub>            | 4±0.2                         | 6.4±0.3                                                       | -0.21                   | 0.041                         | 1.80388E+20                                      | 63.25       |
| WO3/S:Bi <sub>2</sub> O <sub>3</sub> /(Ga,W):BiVO <sub>4</sub> /Co-<br>Pi | 5.1±0.25                      |                                                               |                         |                               |                                                  | 73.5        |

Table S2: Time-resolved PL analysis calculated parameters

| Photoanode                                                                  | $A_1$        | $\tau_1$ (ns) | $A_2$       | $\tau_2$ (ns) | $<_{\tau}>$ (ns)   | $K_{et}(ns^{-1})$ |
|-----------------------------------------------------------------------------|--------------|---------------|-------------|---------------|--------------------|-------------------|
| WO <sub>3</sub> /(Ga,W):BiVO <sub>4</sub>                                   | 646.31±81.42 | 0.34±0.03     | 23.88±8.94  | 1.39±0.24     | $0.477 {\pm} 0.05$ | 2.095±0.20        |
| WO <sub>3</sub> /S:Bi <sub>2</sub> O <sub>3</sub> /(Ga,W):BiVO <sub>4</sub> | 679.97±90.52 | 0.31±0.03     | 37.54±17.41 | 1.02±0.18     | 0.418±0.04         | 2.393±0.22        |

Table S3: fs-TA analysis calculated parameters of dry film

|          | WO <sub>3</sub> /(Ga,W | ):BiVO <sub>4</sub> | WO <sub>3</sub> /S:Bi <sub>2</sub> O <sub>3</sub> /(Ga,W):BiVO <sub>4</sub> |        |  |  |
|----------|------------------------|---------------------|-----------------------------------------------------------------------------|--------|--|--|
|          | А                      | τ (ps)              | А                                                                           | τ (ps) |  |  |
| $\tau_1$ | 1.06E-02               | 1.164               | 1.95E-03                                                                    | 1.947  |  |  |
| $\tau_2$ | 5.50E-03               | 31.15               | 1.45E-03                                                                    | 60.45  |  |  |
| $\tau_3$ | 2.96E-03               | 4640                | 1.35E-03                                                                    | 8233   |  |  |

Table S4: ns-TA analysis calculated parameters in operando

|          | WO <sub>3</sub> /(Ga,W):BiVO <sub>4</sub> |        |                    | WO <sub>3</sub> /S:Bi <sub>2</sub> O <sub>3</sub> /(Ga,W):BiVO <sub>4</sub> |        |                                     |  |
|----------|-------------------------------------------|--------|--------------------|-----------------------------------------------------------------------------|--------|-------------------------------------|--|
|          | А                                         | τ (ns) | $K_{TA} (ns^{-1})$ | А                                                                           | τ (ns) | K <sub>TA</sub> (ns <sup>-1</sup> ) |  |
| $\tau_1$ | 0.43                                      | 2.5    | 0.4                | 0.35                                                                        | 1.1    | 0.909                               |  |

| $\tau_2$ | 0.38 | 43      | 0.023    | 0.37 | 36      | 0.0278   |
|----------|------|---------|----------|------|---------|----------|
| $\tau_3$ | 0.21 | 1300    | 0.0008   | 0.21 | 1100    | 0.0009   |
| $\tau_4$ | 0.07 | >100000 | <0.00001 | 0.07 | >100000 | <0.00001 |

*Table S5: Comparison of improved photocurrent density in* WO<sub>3</sub>/BiVO<sub>4</sub> *heterojunction with various interfacial layers.* 

|    | Photoanode                                                                                            | Electrolyte                                                                                                            | Photocurr<br>ent       | Month    | Year | Ref |
|----|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------|----------|------|-----|
|    |                                                                                                       |                                                                                                                        | (mA.cm <sup>-2</sup> ) |          |      |     |
| 1  | FTO/WO <sub>3</sub> /BiVO <sub>4</sub> /Au                                                            | 0.5 M Na <sub>2</sub> SO <sub>4</sub>                                                                                  | 0.072                  | January  | 2010 | 10  |
| 2  | BiVO <sub>4</sub> /SnO <sub>2</sub> /WO <sub>3</sub>                                                  | 0.1 M Na <sub>2</sub> SO <sub>4</sub>                                                                                  | 2.7                    | March    | 2012 | 11  |
| 3  | BiVO <sub>4</sub> /WO <sub>3</sub> /W                                                                 | 0.1 M KH <sub>2</sub> PO <sub>4</sub>                                                                                  | 2.01                   | October  | 2015 | 12  |
| 4  | WO <sub>3</sub> /BiVO <sub>4</sub> /TiO <sub>2</sub> core-shell                                       | 0.1 M Na <sub>2</sub> SO <sub>4</sub>                                                                                  | 4.2                    | October  | 2016 | 13  |
| 5  | BiVO <sub>4</sub> /WO <sub>3</sub> /SnO <sub>2</sub>                                                  | Phosphate buffer                                                                                                       | 3.1                    | December | 2016 | 14  |
| 6  | WO <sub>3</sub> /W:BiVO <sub>4</sub> /BiVO <sub>4</sub>                                               | 0.5 M Na <sub>2</sub> SO <sub>4</sub>                                                                                  | 2.74                   | January  | 2017 | 15  |
| 7  | BiVO <sub>4</sub> /(RGO/WO <sub>3</sub> )/W <sub>18</sub> O <sub>49</sub> /FeOOH/<br>NiOOH            | 0.5 M Na <sub>2</sub> SO <sub>4</sub>                                                                                  | 2.4                    | January  | 2018 | 16  |
| 8  | FTO-BiVO <sub>4</sub> -W-WO <sub>3</sub>                                                              | 0.1 M Na <sub>2</sub> SO <sub>4</sub>                                                                                  | 2.7                    | June     | 2018 | 17  |
| 9  | Al2O3/BiVO <sub>4</sub> /WO <sub>3</sub>                                                              | 2.0 M KHCO <sub>3</sub>                                                                                                | 4                      | June     | 2018 | 18  |
| 10 | FeOOH/Au-surface/BiVO <sub>4</sub> /WO <sub>3</sub> /Au-<br>bottom                                    | 0.5 M Na <sub>2</sub> SO <sub>4</sub>                                                                                  | 1.97                   | December | 2018 | 19  |
| 11 | WO3/BiVO4/ZnO                                                                                         | 0.5 M Na <sub>2</sub> SO <sub>4</sub>                                                                                  | 2.96                   | December | 2018 | 20  |
| 12 | TiO <sub>2</sub> /BiVO4/SnO <sub>2</sub>                                                              | 0.5 M phosphate buffer                                                                                                 | 2.3                    | January  | 2019 | 21  |
| 13 | 3D<br>TiO <sub>2</sub> /WO <sub>3</sub> /BiVO <sub>4</sub> /FeOOH/NiOOH<br>TiO2/WO3/BiVO4/FeOOH/NiOOH | 0.5 M Na <sub>2</sub> SO <sub>4</sub>                                                                                  | 4.27                   | June     | 2019 | 22  |
| 14 | WO <sub>3</sub> /BiVO <sub>4</sub> /BiOCl                                                             | 0.1 M Na <sub>2</sub> SO <sub>4</sub>                                                                                  | 0.00724                | June     | 2019 | 23  |
| 15 | FTO WO3/CuWO4 BiVO4                                                                                   | 0.1 M phosphate buffer                                                                                                 | 0.66                   | April    | 2019 | 24  |
| 16 | WO <sub>3</sub> /BiVO <sub>4</sub> (BVO)/BiFeO <sub>3</sub>                                           | $0.5 \text{ mol} \cdot L^{-1} \text{ Na}_2 \text{SO}_4$                                                                | 1.5                    | August   | 2019 | 25  |
| 17 | WO <sub>3</sub> -TiO <sub>2</sub> -BiVO <sub>4</sub>                                                  | 0.1M Na <sub>2</sub> S+0.2M<br>NaOH                                                                                    | 0.03                   | November | 2019 | 26  |
| 18 | CNP/B-BiVO <sub>4</sub> /WO <sub>3</sub>                                                              | 0.1 M Na <sub>2</sub> SO <sub>4</sub>                                                                                  | 0.44                   | March    | 2020 | 27  |
| 19 | WO <sub>3</sub> /BiVO <sub>4</sub> _Bi-PED                                                            | $ \begin{array}{c} & Na_2 SO_4 \ 0.5 \ mol \ L^{-1} \\ + \ Na_2 HPO_4 \ 0.1 \ mol \ L^{-1} \\ & pH \ 7.0 \end{array} $ | 2.1 ± 0.3              | June     | 2020 | 28  |

| 20 | WO <sub>3</sub> /BiVO <sub>4</sub> /TANiFe                                         | Borate buffer                         | 3.7  | July | 2020 | 29           |
|----|------------------------------------------------------------------------------------|---------------------------------------|------|------|------|--------------|
| 21 | WO <sub>3</sub> /S:Bi <sub>2</sub> O <sub>3</sub> /(Ga,W):BiVO <sub>4</sub>        | 0.1 M K <sub>2</sub> HPO <sub>4</sub> | 4    |      | 2021 | This<br>work |
| 22 | WO <sub>3</sub> /S:Bi <sub>2</sub> O <sub>3</sub> /(Ga,W):BiVO <sub>4</sub> /Co-Pi | 0.1 M K <sub>2</sub> HPO <sub>4</sub> | 5.14 |      | 2021 | This<br>work |

Table S6: Comparison of hydrogen generation rate for BiVO<sub>4</sub> based heterojunction.

|    | Photoanode                                                                                 | Electrolyte                                 | Gas collection rate $(\mu mol h^{-1} cm^{-2})$ |                       | Month     | Year | Ref |
|----|--------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------|-----------------------|-----------|------|-----|
|    |                                                                                            |                                             | $H_2$                                          | <b>O</b> <sub>2</sub> |           |      |     |
| 1  | BiVO <sub>4</sub> /FeOOH/NiOOH                                                             | 0.5 M Na <sub>2</sub> SO <sub>4</sub>       | 3.5                                            | 1.84                  | February  | 2014 | 30  |
| 2  | WO3-NRs/BiVO4+CoPi                                                                         | 0.5 M Na <sub>2</sub> SO <sub>4</sub>       | 47.8                                           | 23.6                  | May       | 2014 | 31  |
| 3  | WO <sub>3</sub> /(W, Mo)-<br>BiVO <sub>4</sub> /FeOOH/NiOOH                                | 0.5M K2SO4                                  | 94.23                                          | 46.32                 | September | 2014 | 32  |
| 4  | WO3-NRs/BiVO4+CoPi                                                                         | pH 7                                        | 102                                            | 58                    | June      | 2015 | 33  |
| 5  | TiO <sub>2</sub> @BiVO <sub>4</sub>                                                        | 0.1 M phosphate<br>buffered<br>saline (PBS) | 16.17                                          |                       | September | 2015 | 34  |
| 6  | 3 wt% RuO <sub>2</sub> /GBVO <sub>0.10</sub>                                               | pH 7                                        | 48.7                                           | 25                    | October   | 2015 | 35  |
| 7  | CDs/BiVO <sub>4</sub> QDs                                                                  | 0.5M phosphate<br>buffer                    | 0.92                                           | 0.51                  | August    | 2016 | 36  |
| 8  | WO <sub>3</sub> /BiVO <sub>4</sub> /TiO <sub>2</sub>                                       | 0.1 M Na <sub>2</sub> SO <sub>4</sub>       | 25.6                                           |                       | October   | 2016 | 13  |
| 9  | HDP(BiVO <sub>4</sub>   Fe <sub>2</sub> O <sub>3</sub> )                                   | 1.0M KCl                                    | 100                                            | 54.5                  | December  | 2016 | 37  |
| 10 | SrTiO3:La,Rh/C/BiVO4:Mo                                                                    | 0.1 M Na <sub>2</sub> SO <sub>4</sub>       | 16.67                                          | 8.34                  | January   | 2017 | 38  |
| 11 | BiVO <sub>4</sub> -SnO <sub>2</sub> -15/Pt                                                 | 0.2 M sodium<br>borate                      | 1.16                                           |                       | April     | 2017 | 39  |
| 12 | FeOOH/NiOOH +<br>BiVO <sub>4</sub> /(RGO/WO <sub>3</sub> )/W <sub>18</sub> O <sub>49</sub> | 0.5 M Na <sub>2</sub> SO <sub>4</sub>       | 3.14                                           | 5.24                  | January   | 2018 | 16  |
| 13 | FeCoO <sub>x</sub> /BiVO <sub>4</sub>                                                      | 1M potassium<br>borate                      | 86                                             | 42                    | June      | 2018 | 40  |
| 14 | CoPi/NiMoO4/BiVO4                                                                          | 0.5 M Na <sub>2</sub> SO <sub>4</sub>       | 94.65                                          | 46.7                  | June      | 2018 | 41  |
| 15 | BiVO <sub>4</sub> @Co-MIm                                                                  | 0.5 M Na <sub>2</sub> SO <sub>4</sub>       | 53.67                                          | 26.34                 | April     | 2019 | 42  |
| 16 | CoS/BiVO <sub>4</sub>                                                                      | 0.5 M Na <sub>2</sub> SO <sub>4</sub>       | 51.9                                           | 25.7                  | April     | 2019 | 43  |
| 17 | WO <sub>3</sub> /g-C <sub>3</sub> N <sub>4</sub>                                           | 0.04M Na2SO3<br>& 0.1 M Na2S                | 72.5                                           |                       | May       | 2019 | 44  |
| 18 | b-BiVO <sub>4</sub> /TiO <sub>2</sub> -x                                                   | 0.5M potassium phosphate                    | 49.67                                          | 25.64                 | June      | 2019 | 45  |

|    |                                                                                        | buffered with 1<br>m Na2SO3              |       |       |          |      |    |
|----|----------------------------------------------------------------------------------------|------------------------------------------|-------|-------|----------|------|----|
| 19 | BiVO <sub>4</sub> /CTP <sub>2</sub>                                                    | 0.1 M phosphate<br>buffer                | 67.6  | 33.8  | October  | 2019 | 46 |
| 20 | Fe <sub>2</sub> O <sub>3</sub> / BiVO <sub>4</sub> 10                                  | 0.5 M Na <sub>2</sub> SO <sub>4</sub>    | 46.34 |       | November | 2019 | 47 |
| 21 | BVO/MoS <sub>x</sub> (Nafion)–PV4                                                      | phosphate-<br>buffered solution<br>(PBS) | 28.6  | 14.08 | March    | 2020 | 48 |
| 22 | BiVO <sub>4</sub> /NiFeOOH/Co-Pi                                                       | 0.5 M Na <sub>2</sub> SO <sub>4</sub>    | 7     | 3.6   | March    | 2020 | 49 |
| 23 | WO <sub>3</sub> -ZIF-67/BiVO <sub>4</sub> -BP                                          | 0.5 M Na <sub>2</sub> SO <sub>4</sub>    | 15.9  | 7.85  | May      | 2020 | 50 |
| 24 | 0.8wt % g-C <sub>3</sub> N <sub>4</sub> /BiVO <sub>4</sub>                             | 0.5 M Na <sub>2</sub> SO <sub>4</sub>    | 21.4  |       | June     | 2020 | 51 |
| 25 | BiVO <sub>4</sub> /Ov/FeOx                                                             | KPi                                      | 48.2  | 23.8  | July     | 2020 | 52 |
| 26 | ZnIn <sub>2</sub> S <sub>4</sub> /BiVO <sub>4</sub>                                    | 0.1 M Na <sub>2</sub> SO <sub>4</sub>    | 62.44 |       | August   | 2020 | 53 |
| 27 | Cu <sub>2</sub> O/Pt/BiVO <sub>4</sub>                                                 | 10% methanol                             | 1.7   |       | December | 2020 | 54 |
| 28 | WO <sub>3</sub> /S:Bi <sub>2</sub> O <sub>3</sub> /(Ga,W):BiVO <sub>4</sub> /Co-<br>Pi | 0.1M K2HPO4                              | 67.3  | 33.6  | This we  | ork  |    |

# **References:**

- 1 U. Prasad, J. Prakash and A. M. Kannan, *Sustain. Energy Fuels*, 2020, **4**, 1496–1506.
- 2 U. Prasad, J. Prakash, S. K. Gupta, J. Zuniga, Y. Mao, B. Azeredo and A. N. M. Kannan, *ACS Appl. Mater. Interfaces*, 2019, **11**, 19029–19039.
- 3 U. Prasad, J. Prakash, X. Shi, S. K. Sharma, X. Peng and A. M. Kannan, *ACS Appl. Mater*. *Interfaces*, 2020, **12**, 52808-5281.
- 4 B. C. Xiao, L. Y. Lin, J. Y. Hong, H. S. Lin and Y. T. Song, *RSC Adv.*, 2017, **7**, 7547–7554.
- 5 J. Resasco, H. Zhang, N. Kornienko, N. Becknell, H. Lee, J. Guo, A. L. Briseno and P. Yang, *ACS Cent. Sci.*, 2016, **2**, 80–88.
- 6 U. Prasad, J. Prakash, B. Azeredo and A. Kannan, *Electrochim. Acta*, 2019, **299**, 262–272.
- 7 C. Liu, J. Su and L. Guo, *RSC Adv.*, 2016, **6**, 27557–27565.
- 8 Z. Chen, H. N. Dinh and E. Miller, *Photoelectrochemical Water Splitting*, 2013.
- 9 K. Pal, S. Parmar, J. Kang, A. Bist, P. Dua and S. Jang, 2012, **784**, 1926–1934.
- 10 P. Chatchai, S. ya Kishioka, Y. Murakami, A. Y. Nosaka and Y. Nosaka, *Electrochim. Acta*, 2010, **55**, 592–596.
- 11 R. Saito, Y. Miseki and K. Sayama, *Chem. Commun.*, 2012, **48**, 3833–3835.
- 12 L. Xia, J. Bai, J. Li, Q. Zeng, X. Li and B. Zhou, Appl. Catal. B Environ., 2016, 183, 224-

230.

- 13 S. S. Kalanur, I. H. Yoo, J. Park and H. Seo, J. Mater. Chem. A, 2017, 5, 1455–1461.
- 14 J. H. Baek, B. J. Kim, G. S. Han, S. W. Hwang, D. R. Kim, I. S. Cho and H. S. Jung, *ACS Appl. Mater. Interfaces*, 2017, **9**, 1479–1487.
- 15 J. Choi, P. Sudhagar, J. H. Kim, J. Kwon, J. Kim, C. Terashima, A. Fujishima, T. Song and U. Paik, *Phys. Chem. Chem. Phys.*, 2017, **19**, 4648–4655.
- 16 Z. Zhang, B. Chen, M. Baek and K. Yong, *ACS Appl. Mater. Interfaces*, 2018, **10**, 6218–6227.
- 17 R. Wang, T. Xie, T. Zhang, T. Pu, Y. Bu and J. P. Ao, *J. Mater. Chem. A*, 2018, **6**, 12956–12961.
- 18 Y. Miyase, S. Takasugi, S. Iguchi, Y. Miseki, T. Gunji, K. Sasaki, E. Fujita and K. Sayama, *Sustain. Energy Fuels*, 2018, **2**, 1621–1629.
- 19 B. Chen, Z. Zhang, M. Baek, S. Kim, W. Kim and K. Yong, *Appl. Catal. B Environ.*, 2018, 237, 763–771.
- 20 Z. Ma, K. Song, L. Wang, F. Gao, B. Tang, H. Hou and W. Yang, ACS Appl. Mater. Interfaces, 2019, 11, 889–897.
- 21 S. W. Hwang, J. U. Kim, J. H. Baek, S. S. Kalanur, H. S. Jung, H. Seo and I. S. Cho, *J. Alloys Compd.*, 2019, **785**, 1245–1252.
- 22 Q. Pan, H. Zhang, Y. Yang and C. Cheng, *Small*, 2019, **15**, 1–9.
- H. Li, Y. Chen, W. Zhou, H. Jiang, H. Liu, X. Chen and T. Guohui, *J. Alloys Compd.*, 2019, 802, 76–85.
- I. Rodríguez-Gutiérrez, E. Djatoubai, M. Rodríguez-Pérez, J. Su, G. Rodríguez-Gattorno,
  L. Vayssieres and G. Oskam, *Electrochim. Acta*, 2019, 308, 317–327.
- 25 S. Khoomortezaei, H. Abdizadeh and M. R. Golobostanfard, ACS Appl. Energy Mater., 2019, 2, 6428–6439.
- 26 Y. Yang and Y. F. Cheng, *Corros. Sci.*, 2020, **164**, 108333.
- 27 G. M. Peleyeju, E. H. Umukoro, J. O. Babalola and O. A. Arotiba, *ACS Omega*, 2020, **5**, 4743–4750.
- D. Coelho, J. P. R. S. Gaudêncio, S. A. Carminati, F. W. P. Ribeiro, A. F. Nogueira and L. H. Mascaro, *Chem. Eng. J.*, 2020, **399**, 125836.
- 29 H. Sun, W. Hua, Y. Li and J. G. Wang, ACS Sustain. Chem. Eng., 2020, 8, 12637–12645.
- 30 T. W. Kim and K.-S. Choi, *Science* (80-.)., 2014, **343**, 990 LP 994.
- 31 Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen and T. Kitamori, *Small*, 2014, **10**, 3692–3699.
- 32 X. Shi, I. Y. Choi, K. Zhang, J. Kwon, D. Y. Kim, J. K. Lee, S. H. Oh, J. K. Kim and J. H.

Park, Nat. Commun., 2014, 5, 1-8.

- 33 Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita, T. Sugaya, T. Matsui, D. Fujita, M. Tosa, M. Kondo and T. Kitamori, *Sci. Rep.*, 2015, **5**, 1–2.
- 34 X. Zhang, B. Zhang, K. Cao, J. Brillet, J. Chen, M. Wang and Y. Shen, *J. Mater. Chem. A*, 2015, **3**, 21630–21636.
- 35 W. J. Jo, H. J. Kang, K. J. Kong, Y. S. Lee, H. Park, Y. Lee, T. Buonassisi, K. K. Gleason and J. S. Lee, *Proc. Natl. Acad. Sci. U. S. A.*, 2015, **112**, 13774–13778.
- 36 X. Wu, J. Zhao, S. Guo, L. Wang, W. Shi, H. Huang, Y. Liu and Z. Kang, *Nanoscale*, 2016, 8, 17314–17321.
- 37 J. H. Kim, J. W. Jang, Y. H. Jo, F. F. Abdi, Y. H. Lee, R. Van De Krol and J. S. Lee, *Nat. Commun.*, 2016, **7**, 1–9.
- 38 Q. Wang, T. Hisatomi, Y. Suzuki, Z. Pan, J. Seo, M. Katayama, T. Minegishi, H. Nishiyama, T. Takata, K. Seki, A. Kudo, T. Yamada and K. Domen, J. Am. Chem. Soc., 2017, 139, 1675–1683.
- 39 M. Xie, Z. Zhang, W. Han, X. Cheng, X. Li and E. Xie, J. Mater. Chem. A, 2017, 5, 10338– 10346.
- 40 S. Wang, T. He, J. H. Yun, Y. Hu, M. Xiao, A. Du and L. Wang, *Adv. Funct. Mater.*, 2018, **28**, 1–10.
- 41 L. Gao, F. Li, H. Hu, X. Long, N. Xu, Y. Hu, S. Wei, C. Wang, J. Ma and J. Jin, *ChemSusChem*, 2018, **11**, 2502–2509.
- 42 S. Zhou, P. Yue, J. Huang, L. Wang, H. She and Q. Wang, *Chem. Eng. J.*, 2019, **371**, 885–892.
- 43 H. She, M. Jiang, P. Yue, J. Huang, L. Wang, J. Li, G. Zhu and Q. Wang, *J. Colloid Interface Sci.*, 2019, **549**, 80–88.
- 44 M. Bilal Tahir, K. Nadeem Riaz and A. M. Asiri, *Int. J. Energy Res.*, 2019, **43**, 5747–5758.
- 45 Z. Tian, P. Zhang, P. Qin, D. Sun, S. Zhang, X. Guo, W. Zhao, D. Zhao and F. Huang, *Adv. Energy Mater.*, 2019, **9**, 1901287.
- 46 Q. Pan, T. Chen, L. Ma, G. Wang, W. B. Hu, Z. Zou, K. Wen and H. Yang, *Chem. Mater.*, 2019, **31**, 8062–8068.
- Y. lei Li, Y. Liu, Y. juan Hao, X. jing Wang, R. hong Liu and F. tang Li, *Mater. Des.*, 2020, 187, 108379.
- 48 S. Zhang, L. Shen, T. Ye, K. Kong, H. Ye, H. Ding, Y. Hu and J. Hua, *Energy & Fuels*, 2020, **34**, 5016–5023.
- 49 G. Fang, Z. Liu and C. Han, Appl. Surf. Sci., 2020, 515, 146095.
- 50 Y. Wang, H. Shi, K. Cui, L. Zhang, S. Ge and J. Yu, *Appl. Catal. B Environ.*, 2020, **275**, 119094.

- 51 M. F. R. Samsudin, H. Ullah, R. Bashiri, N. M. Mohamed, S. Sufian and Y. H. Ng, *ACS Sustain. Chem. Eng.*, 2020, **8**, 9393–9403.
- 52 Y. Zhang, J. Bai, J. Wang, S. Chen, H. Zhu, J. Li, L. Li, T. Zhou and B. Zhou, *Chem. Eng. J.*, 2020, **401**, 126134.
- 53 J. Hu, C. Chen, Y. Zheng, G. Zhang, C. Guo and C. M. Li, *Small*, 2020, 16.
- 54 J. Liu, B. Zhang, Y. Xiang and G. Ma, New J. Chem., 2021, 45, 517-521.