Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information (ESI)

A Thermodynamic Approach toward Selective and Reversible Sub-ppm

H₂S Sensing by Ultra-small CuO Nanorods impregnated with Nb₂O₅

Nanoparticles

Rahul Purbia^a, Yeong Min Kwon^b, Sung Yeol Choi^a, Sang Heon Kim^a, Yun Sik Lee^c, Zehra

Betül Ahi^d, Hyesung Park^{b*}, Jeong Min Baik^{a*}

 ^aSchool of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU) 2066 Seoburo, Suwon 16419, South Korea
 ^bSchool of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
 ^cSchool of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
 ^dPimsa Otomotive, Mahallesi, 14.Sokak No:B/1, Cayirova/Kocaeli, Turkey.

Figure S1: (a) TEM, (b-c) HR-TEM images of CuO NPs. STEM-EDS mapping images and element distribution of CuO NPs: (d) region of mapping and (e) Cu, and (f) O element distributions. (scale bar: (a) 100 nm, (b) 20 nm (inset 10 nm), (c) 2 nm, (d-f) 50 nm)

Figure S2: (a) TEM, (b-c) HR-TEM images of Nb₂O₅ NPs. STEM-EDS mapping images and element distribution of Nb₂O₅ NPs: (d) region of mapping and (e) Nb, and (f) O element distributions. (scale bar: (a) 200 nm, (b) 100 nm, (c) 5 nm, (d-f) 100 nm)

Figure S3: TEM images of composites with different concentrations of Nb₂O₅.

Figure S4: (a) I-V characteristics of pristine CuO, pristine Nb_2O_{5} , and CuO- Nb_2O_5 at room temperature (b) schematic CuO-Nb₂O₅ interface.

Figure S5: Gas sensing characteristics with different Nb₂O₅ concentration tested sensing device at 220°C temperature towards 500 ppb H₂S (a) 0%, (b) 5%, (c) 10%, (d) 20%, (e) 30%, (f) 40%, (g) 50%, (h) 60% loading of Nb₂O₅.

Figure S6: H_2S gas sensing of pure Nb₂O₅ at different temperature (a) 100°C (b) 150°C, (c) 220°C, (d) 250°C.

Figure S7: three repetitive cycles of H_2S gas sensing of CuO-Nb₂O₅ at 250°C temperatures.

Figure S8: response versus gas concentration (H₂S) as sensitivity of CuO–Nb₂O₅ at 220°C temperatures (a) linear response, (b) log response.

Figure S9: (a) H_2S gas sensing of pure Nb_2O_5 at different H_2S concentration, (b) response valve of pure Nb_2O_5 and CuO- Nb_2O_5 at different H_2S concentration.

Figure S10: CuO– Nb₂O₅ sensor gas response at 100 ppb H₂S gas at 220°C.

Figure S11: the change of response value and baseline resistance with time for CuO– Nb_2O_5 sensor at 220°C during 500 ppb H_2S exposure.

Figure S12: Gas response of CuO sensor toward 500 ppb H_2S as a function of relative humidity from 0 to 90% at 220°C.

Figure S13: Deconvoluted XPS spectra of CuO-Nb₂O₅ before and after H₂S exposure (a) Nb 3d, (b) Cu 2p.

Figure S14: Thermodynamic Gibbs free energy of formation of (a) sulfidation reaction, (b) oxidation reaction using H₂S and O₂ gas.

Figure S15: Schematic diagram of the lab-made humidity sensor measurement system.

Temperature (°C)	Response time (min)	Recovery time (min)
100	10	>20 min
150	10	>15 min
160	8	>15 min
180	7	>15 min
200	5	10 min
220	3	1 min

Table S1: Calculated sensing response time and recovery time of CuO-Nb₂O₅ sensor.

Table S2: state of the art: various reported studies for H₂S sensing where H₂S directly reacts with the CuO to generate metallic CuS.

Materials	Sulfidation Temp. (°C)	Oxidation temp. (°C)	Response (Conc.)
CuO encapsulated in SiO₂ ^[1]	160	350	8 (10 ppm)
CuO monolayer ^[2]	25	300	8 (10 ppm)
CuO encapsulated in SiO ₂ ^[3]	160	350	(ppm)
$CuO/In_2O_3^{[4]}$	70	400	229.3 (5 ppm)
CuO microflowers ^[5]	25	300	2 (1 ppm)
WO ₃ /CuO composites ^[6]	80	300	105 (5 ppm)
Pd doped CuO nanoflower ^[7]	80	300	123 (50 ppm)
Pt-doped CuO ^[8]	40	300	135.1 (10 ppm)
Our work (Nb ₂ O ₅ -CuO)	160-220	160-220	9 (1.5 ppm)

References

- [1] A. Paul, B. Schwind, C. Weinberger, M. Tiemann, T. Wagner, *Adv. Funct. Mater.* **2019**, 29, 1904505.
- [2] Z. Xu, Y. Luo, G. Duan, ACS Appl. Mater. Interfaces 2019, 11, 8164.
- [3] A. Paul, C. Weinberger, M. Tiemann, T. Wagner, ACS Appl. Nano Mater. 2019, 2, 3335.
- [4] S. Li, L. Xie, M. He, X. Hu, G. Luo, C. Chen, Z. Zhu, Sensors Actuators B Chem. 2020, 310, 127828.
- [5] K. Wu, C. Zhang, J. Mater. Sci. Mater. Electron. 2020, 1.
- [6] M. He, L. Xie, X. Zhao, X. Hu, S. Li, Z.-G. Zhu, J. Alloys Compd. 2019, 788, 36.
- [7] X. Hu, Z. Zhu, C. Chen, T. Wen, X. Zhao, L. Xie, Sensors Actuators B Chem. 2017, 253, 809.
- [8] Q. Tang, X.-B. Hu, M. He, L.-L. Xie, Z.-G. Zhu, J.-Q. Wu, Appl. Sci. 2018, 8.