Supporting Information

Efficient electrocatalytic conversion of CO₂ to syngas for Fischer-Tropsch process by partially reduced Cu₃P nanowire

Bing Chang^a, Xia-Guang Zhang^b, Zhaojun Min^b, Weiwei Lu^c, Zhiyong Li^b, Jikuan Qiu^b, Huiyong Wang^b, Jing Fan^{a*}, and Jianji Wang^{b*}

^a School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China

^b School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan, 453007, People's Republic of China

^c School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan, 471023, People's Republic of China

* Corresponding authors

E-mail address: fanjing@htu.edu.cn (Prof. J. Fan) and jwang@htu.edu.cn (Prof. J. Wang)

Table of Contents

Fig. S1-S21	
Table S1-S3	11
References	13

Fig. S1. SEM image of the bare copper foam.

Fig. S2. Cross-section SEM image of the R-Cu₃P/Cu.

Fig. S3. TEM image of the R-Cu₃P/Cu.

Fig. S4. HR-TEM partial enlarged image of R-Cu₃P/Cu.

Fig. S5. HR-TEM image of the Cu₃P/Cu.

Fig. S6. HAADF image and corresponding EDS line scanning spectrum of R-Cu₃P/Cu.

Fig. S7. XPS survey spectrum of R-Cu₃P/Cu.

Fig. S8. AES spectra of Cu₃P/Cu, O-Cu₃P/Cu, and R-Cu₃P/Cu.

Fig. S9. CO and H₂ FE of R-Cu₃P/Cu, Cu₃P/Cu, CuO, and Cu₂O at -0.625 V vs. RHE.

Fig. S10. The ratio of $V_{co}\!/V_{H2}$ at different applied potentials.

Fig. S11. Multi-potential process of R-Cu₃P/Cu in CO₂RR process. Each applied potential last for 500 s.

Fig. S12. Time-dependent current plots of R-Cu₃P/Cu in CO₂-saturated 0.5 M NaHCO₃ solution at preset potentials of -0.874 V (CO/H₂: 1/2) and -1.02 V (CO/H₂: 2/5).

Fig. S13. SEM image of R-Cu₃P/Cu after 20 h potentiostatic electrolysis.

Fig. S14. TEM image of R-Cu₃P/Cu after long-term electrolysis.

Fig. S15. XRD pattern of R-Cu₃P/Cu after long-term electrolysis.

Fig. S16. Raman spectrum of R-Cu₃P/Cu after long-term electrolysis.

Fig. S17. High-resolution XPS spectra of R-Cu₃P/Cu after long-term electrolysis.

Fig. S18. CV curves of R-Cu₃P/Cu foam (a) and sheet (b) at different scan rates: 5, 10, 20, 30, 50, 100, 200, and 300 mV s⁻¹ from inside to outside. (c) Capacitive current at 0.339 V (vs. RHE) as a function of the scan rate for R-Cu₃P/Cu foam and sheet ($\Delta j = j_a$ - j_c). (d) Nyquist plots of R-Cu₃P/Cu foam and sheet in the frequency range of 0.1-100 KHz. Inset: Randles' equivalent circuit used for fitting the experimental impedance data. Note: solution resistance (R_s), electrical double-layer capacitance (C_{dl}), charge transfer resistance (R_{ct}).

Fig. S19. Side and vertical view of the optimized structures of Cu₃P.

Fig. S20. DOS of *d*-electrons for the surface Cu atoms of Cu₃P and Cu (111) surface.

The energy is relative to the Fermi level.

Fig. S21. Charge density difference of Cu and P on the bulk Cu₃P as defined by: $\Delta \rho = \rho_{Cu3P} - \rho_{Cu} - \rho_{P}$. The yellow and green area represents electron accumulation and depletion, respectively.

Fig. S22. DOS of *d*-electrons for the surface Cu atoms of Cu_3P and *s*, *p*-electrons for the adsorbed CO. The energy is relative to the Fermi level.

Catalyst	Electrolyte	Electrolyte $\begin{array}{c} Current \\ density \\ (mA \ cm^{-2}) \\ (CO/H_2) \end{array} \begin{array}{c} Tune \\ rat \\ CO \end{array}$		Stability (h)	Ref.
AgP ₂ nanocrystals	0.5 M KHCO ₃	0.28 (1:3) 2.46 (1:1)	1:3-5:1	12	(1)
Ag doped Co ₃ O ₄	0.1 M KHCO3	~7(1:3)	1:4-5:4	10	(2)
silver nanowires	0.5 M KHCO ₃	4 (1:1) 22 (3:2)	1:1-4:1	12	(3)
Ru (II) polypyridyl	0.5 M NaHCO ₃	2.5 (1:4)	1:4-2:1	2	(4)
MoSeS alloy	4 mol% EmimBF ₄ 96 mol% H ₂ O	-	1:1	10	(5)
Zn _x Cd _{1-x} S- Amine	0.5 M NaHCO ₃	~6(1:1)	0-19.7	10	(6)
Co and Ni Single-Atom	0.5 M KHCO ₃	> 74	0.23-2.26	7	(7)
Pd/C	0.5 M NaHCO ₃	0.3 (3:4)	1:4-3:4	-	(8)
γ-In ₂ Se ₃	30 wt% [Bmim]PF ₆ 65 wt% MeCN 5 wt% H ₂ O	90.1 (1:1)	1:3-24:1	25	(9)
SnO ₂ /CuS	0.1 M KHCO ₃	~5 (1:1) ~3 (1:3)	0.11-3.86	24	(10)
Zn-Ni	0.1 M KCl	8.4 (11:9)	-	50	(11)
Au/TiNS	0.5 M KHCO ₃	-	0.3-3	-	(12)
PdH/TMN	0.5 M NaHCO ₃	0.4 (3:4)	0.16-0.74	-	(13)
CdS_xSe_{1-x} nanorods	0.1 M KHCO ₃	27.1	1:4-4:1	10	(14)
Co ₃ O ₄ -Cdots C ₃ N ₄	0.5 M KHCO ₃	0.25 (1:1)	0.07:1-4:1	30	(15)

Table S1. Comparison with other reports on the CO_2RR to produce syngas.

MoS ₂	EMIM-BF ₄ solution (94 mol% water)	61 (4:1)	1:2-4:1	10	(16)
Zn	0.1 M KHCO ₃	11.36 (7:6)	1:5-2.31:1	9.5	(17)
Fe-N-C	0.5 M NaHCO ₃	-	0-4:1	10	(18)
Cu-enriched Au	0.5 M KHCO ₃	30 (1:1)	-	8	(19)
Cu–In alloys	0.1 M KHCO ₃	-	1:18-1:2.6	16.7	(20)
Cu	0.1 M KHCO ₃	~7 (1:1)	9:16-32:1	-	(21)
carbon- supported Cu/In ₂ O ₃	0.5 M KHCO ₃	4.6 (1:4) 12.7(1:0.4)	1:4-1:0.4	5	(22)
R-Cu ₃ P/Cu	0.5 M NaHCO ₃	36.3 (1:1) 82.9 (1:2) 115.0 (2:5) 130.0 (1:3)	0.1-2.24	> 20	This work

Р Р Atom Cu Cu Cu Cu Cu Cu -0.56 -0.56 0.19 0.17 0.17 019 0.20 0.20 Charge

Table S2. Bader charge for the surface atoms of Cu₃P.

Table S3. Bader charge of CO₂ chemisorption on Cu₃P surface.

Atom	С	0	0	Tot
Charge	1.58	-1.08	-1.06	-0.56

References

- (1) H. Li, P. Wen, D. S. Itanze, Z. D. Hood, X. Ma, M. Kim, S. Adhikari, C. Lu, C.
- Dun, M. Chi, Y. Qiu and S. M. Geyer, Nat. Commun., 2019, 10, 5724.
- (2) S. -Y. Zhang, Y. -Y. Yang, Y. -Q. Zheng and H. -L. Zhu, *J. Solid State Chem.*, 2018, 263, 44-51.
- (3) W. Xi, R. Ma, H. Wang, Z. Gao, W. Zhang and Y. Zhao, ACS Sustain. Chem. Eng., 2018, 6, 7687-7694.
- (4) P. Kang, Z. Chen, A. Nayak, S. Zhang and T. J. Meyer, *Energy Environ. Sci.*, 2014, 7, 4007-4012.
- (5) J. Xu, X. Li, W. Liu, Y. Sun, Z. Ju, T. Yao, C. Wang, H. Ju, J. Zhu, S. Wie and Y. Xie, *Angew. Chem. Int. Ed.*, 2017, 56, 9121-9125.
- (6) N. Meng, C. Liu, Y. Liu, Y. Yu and B. Zhang, *Angew. Chem. Int. Ed.*, 2019, **58**, 18908-18912.
- (7) Q. He, D. Liu, J. H. Lee, Y. Liu, Z. Xie, S. Hwang, S. Kattel, L. Song and J. G.

Chen, Angew. Chem. Int. Ed., 2020, 59, 3033-3037.

- (8) W. Sheng, S. Kattel, S. Yao, B. Yan, Z. Liang, C. J. Hawxhurst, Q. Wu and J. G. Chen, *Energy Environ. Sci.*, 2017, **10**, 1180-1185.
- (9) D. Yang, Q. Zhu, X. Sun, C. Chen, W. Guo, G. Yang and B. Han, *Angew. Chem. Int. Ed.*, 2020, **59**, 2354-2359.
- (10) X. Wang, J. Lv, J. Zhang, X. L. Wang, C. Xue, G. Bian, D. Li, Y. Wang and T.Wu, *Nanoscale*, 2020, **12**, 772-784.
- (11) M. Beheshti, S. Kakooei, M. C. Ismail and S. Shahrestani, *Electrochim. Acta*, 2020, **341**, 135976.
- (12) F. Marques Mota, D. L. T. Nguyen, J. -E. Lee, H. Piao, J. -H. Choy, Y. J. Hwang and D. H. Kim, *ACS Catal.*, 2018, **8**, 4364-4374.
- (13) Y. Liu, D. Tian, A. N. Biswas, Z. Xie, S. Hwang, J. H. Lee, H. Meng and J. G.Chen, Angew. Chem. Int. Ed., 2020, 59, 11345-11348.
- (14) R. He, A. Zhang, Y. Ding, T. Kong, Q. Xiao, H. Li, Y. Liu and J. Zeng, Adv. Mater., 2018, **30**, 1705872.
- (15) S. Guo, S. Zhao, X. Wu, H. Li, Y. Zhou, C. Zhu, N. Yang, X. Jiang, J. Gao, L. Bai,
- Y. Liu, Y. Lifshitz, S. -T. Lee and Z. Kang, Nat. Commun., 2017, 8, 1828.
- (16) K. Lv, C. Teng, M. Shi, Y. Yuan, Y. Zhu, J. Wang, Z. Kong, X. Lu and Y. Zhu, *Adv. Funct. Mater.*, 2018, **28**, 1802339.
- (17) B. Qin, Y. Li, H. Fu, H. Wang, S. Chen, Z. Liu and F. Peng, ACS Appl. Mater. Inter., 2018, 10, 20530-20539.
- (18) T. N. Huan, N. Ranjbar, G. Rousse, M. Sougrati, A. Zitolo, V. Mougel, F. Jaouen

and M. Fontecave, ACS Catal., 2017, 7, 1520-1525.

- (19) M. B. Ross, C. T. Dinh, Y. Li, D. Kim, P. De Luna, E. H. Sargent and P. Yang, J. Am. Chem. Soc., 2017, **139**, 9359-9363.
- (20) Z. B. Hoffman, T. S. Gray, K. B. Moraveck, T. B. Gunnoe and G. Zangari, ACS Catal., 2017, 7, 5381-5390.
- (21) B. Kumar, J. P. Brian, V. Atla, S. Kumari, K. A. Bertram, R. T. White and J. M. Spurgeon, *ACS Catal.*, 2016, **6**, 4739-4745.
- (22) H. Xie, S. Chen, F. Ma, J. Liang, Z. Miao, T. Wang, H. -L. Wang, Y. Huang and
- Q. Li, ACS Appl. Mater. Inter., 2018, 10, 36996-37004.