Supporting Information

## High-capacity zinc-iodine flow batteries enabled by a

## polymer-polyiodide complex cathode

Jing Yang<sup>a,b</sup>, Yuxi Song<sup>a</sup>, Qinghua Liu<sup>c</sup>, Ao Tang<sup>a,\*</sup>

<sup>a</sup> Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China

<sup>b</sup> Nano Science and Technology Institute, University of Science and Technology of

China, Suzhou, China

<sup>c</sup> National Institute of Clean-and-Low-Carbon Energy, Beijing, China

\*Corresponding author: Ao Tang

Email: <u>a.tang@imr.ac.cn</u> Tel: +86-024-81083919 Fax: +86-024-23998320

#### S1. Volumetric Capacity and Energy Density

Given the stoichiometric ratio of transferred electron to iodine or iodide reactant ( $\xi$ ), Faraday's constant (F), concentration of iodine or iodide reactant in the catholyte (c), and open circuit voltage (OCV), the theoretical volumetric capacity ( $C_V$ , Ah/L) and volumetric energy density ( $E_V$ , Wh/L) in the flow battery can be calculated by the following equations:

$$C_V = \frac{F \times C \times \xi}{3600} \tag{S1}$$

$$E_V = C_V \times OCV \tag{S2}$$

For 6 M KI, we can calculate the theoretical volumetric capacity and energy density of the ZIFB as follows:

$$Zn^{2+} + 3I^{-} \rightarrow Zn + I_{3}^{-} \qquad E = -1.299 V \tag{S3}$$

$$C_V = \frac{96485 \times 6 \times \frac{2}{3}}{3600} = 107.2 \ (Ah/L)$$
$$E_V = 107.2 \times 1.299 = 139.25 \ (Wh/L)$$

For 6 M KI with PVP, we can calculate the theoretical volumetric capacity and energy density of the PVP-ZIFB as follows:

$$Zn^{2+} + 3I^{-} + PVP \rightarrow Zn + PVP \square I_{3}^{-} \qquad E = -1.299 V$$
 (S4)

 $C_V = \frac{96485 \times 6 \times 1}{3600} = 160.8 \ (Ah/L)$  $E_V = 160.8 \times 1.299 = 208.87 \ (Wh/L)$ 

It is noted that both reaction (S3) and (S4) can exist in the catholyte of PVP-ZIFB. For 6 M I<sup>-</sup>, therefore, the volumetric capacity would be a value between 107.2 to 160.8 Ah/L, while the energy density is between 139.25 and 208.87 Wh/L, as summarized in Table S4.

#### S2. Molar Capacity

Molar capacity ( $C_n$ ) is defined as the volumetric discharge capacity per molar concentration of  $\Gamma$  initially dissolved in catholyte, as given in Eq. (S5)

$$C_n = \frac{C_V}{C_s} \tag{S5}$$

where  $C_V$  is the volumetric capacity for a given salt concentration of  $C_s$  in catholyte, which can be further derived as shown in Eq. (S6)

$$C_V = \frac{Q_e}{V_s} = \frac{n_e F}{\frac{n_s}{c_s}} = \frac{n_e}{n_s} F c_s = \xi_{e/s} F c_s$$
(S6)

where  $Q_e$  is the total quantity of electric charge from the electrochemical conversion between iodide and triiodide/iodine in catholyte,  $V_s$  is the volume of the catholyte, Fis Faraday constant,  $n_e$  is the molar amount of transferred electrons and  $n_s$  is the molar amount of the salt in the fixed volume of catholyte where the subscript smeans KI or Znl<sub>2</sub> dissolved in catholyte,  $\xi_{e/s}$  means the stoichiometric number of transferred electrons with respect to different salt solutes. Combining Eq. (S5) and Eq. (S6), one can obtain Eq. (S7)

$$C_n = \xi_{e/s} F \tag{S7}$$

where  $\xi_{e/s}$  is 2/3 for KI, 1 for KI with PVP and 2 for ZnI<sub>2</sub>. Based on Eq. (S7), the theoretical molar capacities of KI, KI with PVP and ZnI<sub>2</sub> are calculated to be 17.87 26.8 and 35.74 Ah/mol, respectively.

$$C_n = \xi_{e/s}F = \frac{2}{3} \times 96484 = 17.86 \ (Ah/mol)$$
  

$$C_n = \xi_{e/s}F = 1 \times 96484 = 26.8 \ (Ah/mol)$$
  

$$C_n = \xi_{e/s}F = 2 \times 96484 = 35.74 \ (Ah/mol)$$

Finally, the unlock capacity can be defined as

Unlock

$$\begin{aligned} & \text{Unlock capacity (\%)} = \frac{\frac{C_n(KI + PVP) - C_n(KI)}{C_n(KI)}}{C_n(KI)} \times 100\% \\ & \frac{C_n(ZnI_2 + complexing \ agent) - C_n(ZnI_2)}{C_n(ZnI_2)} \times 100\% \end{aligned}$$

The unlocking capacities for different catholyte compositions are summarized in

Table S7.

#### **S3.** Cost calculation

The cost of each of the chemicals is referred to the website (www.macklin.cn), which is listed in Table S5. Based on Table S5 and S6, the cost of the iodine-based catholyte can be estimated according to the following equations: For inorganic additives:

Cost of catholyte 
$$(\$/(mol \cdot L^{-1})) = \left[P_a \times \frac{1}{C_a} + P_{a,s} \times \frac{1}{C_{a,s}}\right] \times \frac{1 Ah}{Cap_a}$$
 (S8)

For polymer additives:

$$Cost of \ catholyte\left(\frac{mol \cdot L^{-1}}{L^{-1}}\right) = \left[P_a \times \frac{1 \ Ah}{Cap_a}\right] \times \frac{1}{C_a} + \frac{P_{1,a,s} \times m_{a,s}}{C_a}$$
(S9)

where in the catholyte, the  $P_a$  is the price of active material (\$/mol),  $C_a$  is the concentration of the active material (mol/L),  $P_{a,s}$  is the cost of the supporting material (\$/mol),  $P_{1,a,s}$  is the cost of the supporting material (\$/g),  $C_a$  is the concentration of active material (mol/L),  $C_{a,s}$  is the concentration of supporting electrolyte (mol/L), and  $Cap_a$  are the capacity at the given active material (Ah/mol), the  $m_{a,s}$  is the mass of the supporting material (g). For KI:

$$P_{KI} = 0.09 \frac{\$}{g} \times 166 \frac{g}{mol} = 14.96 \frac{\$}{mol}$$
  
Cost of (KI) =  $P_{KI} \times \frac{1 Ah}{Cap_{KI}}$   
= 14.96 ×  $\frac{1}{12}$  × 1 = 1.186 (\$/(mol \cdot L^{-1}))

For KI+PVP:

$$P_{KI} = 0.09 \frac{\$}{g} \times 166 \frac{g}{mol} = 14.96 \frac{\$}{mol}$$
  

$$Cost \ of \ (PVP) = \left(0.03 \frac{\$}{g} \times 0.18 \ g\right) = 0.005 \ (\$)$$
  

$$Cost \ of \ (KI + PVP) = \left[P_{KI} \times \frac{1 \ Ah}{Cap_{KI}}\right] \times \frac{1}{C_{KI}} + \frac{P_{PVP} \times m_{PVP}}{C_{KI}}$$
  

$$= \frac{14.96}{19} + 0.005 = 0.754 \ (\$/(mol \cdot L^{-1}))$$

For Znl<sub>2</sub>:

$$P_{Znl_2} = \left(0.16\frac{\$}{g} \times 319\frac{g}{mol}\right) = 51.04\left(\frac{\$}{mol}\right)$$
  
Cost of  $(Znl_2) = P_{Znl_2} \times \frac{1Ah}{Cap_{Znl_2}} \times \frac{1}{C_{Znl_2}} = \frac{51.04}{28} = 1.82\left(\$/(mol \cdot L^{-1})\right)$ 

For 
$$\text{ZnI}_2 + \text{ZnBr}_2$$
:  
 $P_{ZnI_2} = \left(0.16 \frac{\$}{g} \times 319 \frac{g}{mol}\right) = 51.04 \left(\frac{\$}{mol}\right)$   
 $P_{ZnBr_2} = \left(0.06 \frac{\$}{g} \times 225 \frac{g}{mol}\right) = 11.18 \left(\frac{\$}{mol}\right)$   
Cost of  $(ZnI_2 + ZnBr_2) = \left[P_{ZnI_2} \times \frac{1}{C_{ZnI_2}} + P_{ZnBr_2} \times \frac{1}{C_{ZnBr_2}}\right] \times \frac{1 Ah}{Cap_{ZnI_2}}$ 

$$=\frac{51.04+14.18\times 2}{35}=2.09\,(\$/(mol\cdot L^{-1}))$$

For NH<sub>4</sub>I+NH<sub>4</sub>CI:

$$\begin{split} P_{NH_4I} &= \left(0.16 \frac{\$}{g} \times 144.94 \frac{g}{mol}\right) = 23.19 \left(\frac{\$}{mol}\right) \\ P_{NH_4Cl} &= \left(0.006 \frac{\$}{g} \times 53.49 \frac{g}{mol}\right) = 0.33 \left(\frac{\$}{mol}\right) \\ Cost of (NH_4I + NH_4Cl) &= \left[P_{NH_4I} \times \frac{1}{C_{NH_4I}} + P_{NH_4Cl} \times \frac{1}{C_{NH_4Cl}}\right] \times \frac{1 Ah}{Cap_{NH_4I}} \\ &= \frac{23.19 + 0.33 \times 2}{17.9} = 1.33 \left(\$/(mol \cdot L^{-1})\right) \end{split}$$

For Znl<sub>2</sub>+ NH<sub>4</sub>Br:

For Nal:

$$P_{NaI} = \left(0.11 \frac{\$}{g} \times 149.89 \frac{g}{mol}\right) = 16.49 \left(\frac{\$}{mol}\right)$$
$$Cost \ of \ (NaI) = \left[P_{NaI} \times \frac{1}{C_{NaI}}\right] \times \frac{1 \ Ah}{Cap_{NaI}}$$

$$=\frac{16.49}{17.86}=0.92 (\$/(mol \cdot L^{-1}))$$
  
Cost of (NaI + PC) > 0.92 (\$/(mol \cdot L^{-1}))

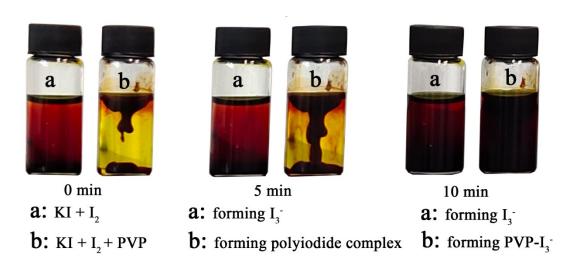



Fig. S1. Variations of the KI solutions with and without PVP additives over time (a) 0 min; (b) 5 min; (c) 10 min.

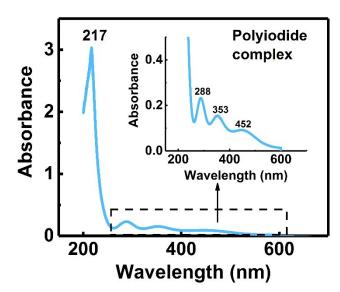



Fig. S2. Ultraviolet spectrum of polyiodide complex.

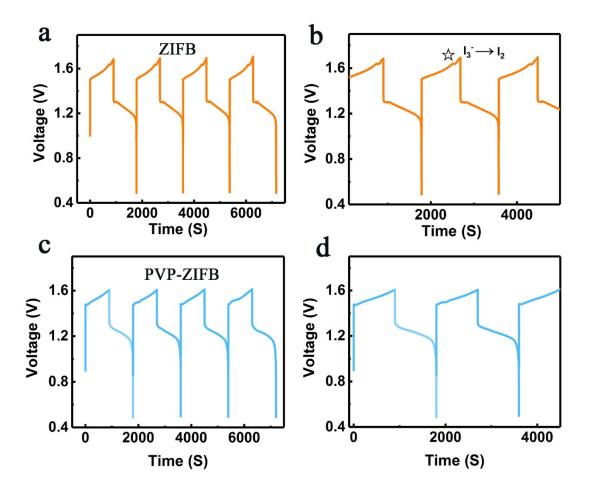



Fig. S3. Charge-discharge voltage profiles at 20 mA cm<sup>-2</sup>. (a)-(b) ZIFB; (c)-(d) PVP-ZIFB.

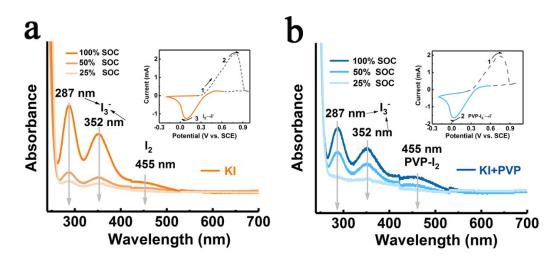



Fig. S4. The variations of UV-Vis spectra upon reduction for (a) 1 M KI and (b) 1 M KI + PVP.

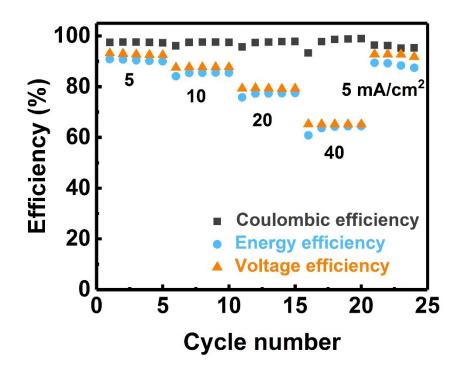



Fig. S5. Rate performance of PVP-ZIFB.

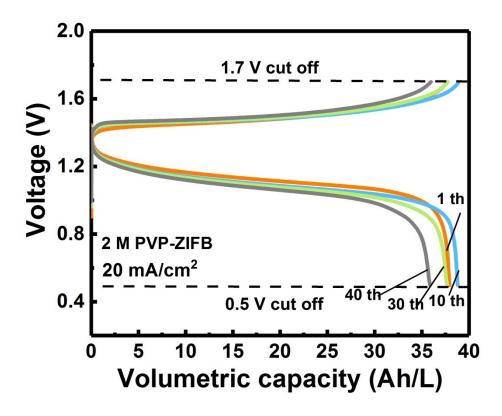



Fig. S6. Charge-discharge curves of PVP-ZIFB at 20 mA cm  $^{\text{-2}}$  with 2 M I  $^{\text{-}}$ 



Fig. S7. Carbon felts after long-term charge-discharge cycling (120 h).

## Table S1. Calculated binding energy of NVP-I<sub>2</sub>

| NVP-I <sub>2</sub> /Hatree | VP-I <sub>2</sub> /Hatree NVP/Hatree |                | Binding energy (Ha) |  |  |
|----------------------------|--------------------------------------|----------------|---------------------|--|--|
| -14203.8274268             | -363.6827210                         | -13840.1294754 | -0.0152             |  |  |

## Table S2. Summary of ZIFB and PVP-ZIFB performance for 1 M I $^{\rm -}$ at 20 mA cm $^{\rm -2}$

| System   | Average charge<br>voltage (V) | Average discharge<br>voltage (V) | Volumetric<br>discharge capacity<br>(Ah/L) |
|----------|-------------------------------|----------------------------------|--------------------------------------------|
| ZIFB     | 1.65                          | 1.2                              | 12                                         |
| PVP-ZIFB | 1.55                          | 1.3                              | 19                                         |

# Table S3. Summary of PVP-ZIFB performance at 20 mA $\rm cm^{-2}$ with different concentrations of $\rm I^-$

| Catholyte composition | Average charge<br>Voltage (V) | Average discharge<br>Voltage (V) | Volumetric<br>discharge capacity<br>(Ah/L) |  |  |
|-----------------------|-------------------------------|----------------------------------|--------------------------------------------|--|--|
| 1 M I⁻                | 1.55                          | 1.3                              | 19                                         |  |  |
| 2 M I <sup>-</sup>    | 1.5                           | 1.2                              | 37                                         |  |  |
| 6 M I⁻                | 1.45                          | 1.15                             | 115                                        |  |  |

| Catholyte composition | tholyte composition Theoretical volumetric capacity (Ah/L) |             |  |
|-----------------------|------------------------------------------------------------|-------------|--|
| 1 M I <sup>-</sup>    | 17.86-26.8                                                 | 23.2-34.8   |  |
| 4 M I <sup>-</sup>    | 71.47-107.2                                                | 92.83-139.2 |  |
| 6 M I <sup>-</sup>    | 107.2-160.8                                                | 139.2-208   |  |

Table S4. Theoretical volumetric capacity and energy density of PVP-ZIFB

| Table S5. | The costs | of chemicals |
|-----------|-----------|--------------|
|           |           |              |

| Chemical materials | Price (\$/kg) | Molar mass |  |
|--------------------|---------------|------------|--|
|                    |               | (g/mol)    |  |
| KI                 | 85.7          | 166        |  |
| Znl <sub>2</sub>   | 159.88        | 319        |  |
| ZnBr <sub>2</sub>  | 49.7          | 225        |  |
| NH <sub>4</sub> Br | 15.83         | 97.94      |  |
| NH₄CI              | 6.114         | 53.49      |  |
| NH <sub>4</sub> I  | 160.68        | 144.94     |  |
| PVP                | 27.77         | N/A        |  |

| Catholyte                            | Molar capacity | Reference |  |
|--------------------------------------|----------------|-----------|--|
| composition                          | (Ah/mol)       |           |  |
| KI                                   | 12             | This work |  |
| Znl <sub>2</sub>                     | 28             | [20]      |  |
| Znl <sub>2</sub> +NH <sub>4</sub> Br | 39             | [20]      |  |
| Znl <sub>2</sub> +ZnBr <sub>2</sub>  | 35             | [27]      |  |
| Znl <sub>2</sub>                     | 34             | [18]      |  |
| NH <sub>4</sub> I/NH <sub>4</sub> Cl | 17.9           | [22]      |  |
| KI+PVP                               | 19             | This work |  |

Table S6. Molar capacity for different catholyte compositions

Table S7. Comparison of the PVP-ZIFB system with other ZIFB systems

| Catholyte                         | Concent                            | Electro | Unlock | Price             | No.   | Current        | CE/EE    | Referen |
|-----------------------------------|------------------------------------|---------|--------|-------------------|-------|----------------|----------|---------|
|                                   | ration of                          | de      | ing    | (\$/mol           | of    | density        |          | се      |
|                                   | I <sup>-</sup> (mol L <sup>-</sup> | area    | capaci | L <sup>-1</sup> ) | cycle | (mA/cm         |          |         |
|                                   | <sup>1</sup> )                     | (cm²)   | ty (%) |                   | S     | <sup>2</sup> ) |          |         |
| KI                                | 6                                  | 28      | 0      | 1.19              | 50    | 20             | 99%/78%  | This    |
|                                   |                                    |         |        |                   |       |                |          | work    |
| Znl <sub>2</sub>                  | 1                                  | 5       | 0      | 1.82              | 30    | 40             | 99%/82%  | [20]    |
| Znl <sub>2</sub>                  | 7                                  | 40      | 21%    | 1.5               | 40    | 10             | 99%/82%  | [18]    |
| Znl <sub>2</sub> +NH <sub>4</sub> | 1                                  | 5       | 39.2%  | 1.5               | 100   | 40             | 99%/85%  | [20]    |
| Br                                |                                    |         |        |                   |       |                |          |         |
| Znl <sub>2</sub> +ZnBr            | 7                                  | 4       | 38.8%  | 3.72              | 50    | 10             | ~95%/N/A | [27]    |
| 2                                 |                                    |         |        |                   |       |                |          |         |
| NH <sub>4</sub> I+NH <sub>4</sub> | 2.5                                | 9       | 49.2%  | 1.33              | 1200  | 20             | 99%/88%  | [22]    |
| Cl                                |                                    |         |        |                   |       |                |          |         |
| Nal+PC                            | 1.5                                | 5 *     | 48.8%  | > 0.92**          | 50    | 20             | 90%/68%  | [25]    |
| KI+PVP                            | 6                                  | 28      | 58.3%  | 0.75              | 600   | 20             | 99%/79%  | This    |
|                                   |                                    |         |        |                   |       |                |          | work    |

\* Based on observation from the photo [25]

\*\* Mass of PC is not available in [25]