Supporting Information

Carbon nanotubes@silicone solar evaporators with controllable salt-tolerance for efficient

water evaporation in closed system

Tao Hu^{*a#*}, Kai Chen^{*a#*}, Lingxiao Li^{*a*} and Junping Zhang^{**a,b*}

^a Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000 Lanzhou, P.R. China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P.R. China

[#] These authors contributed equally to this work.

* E-mail address: jpzhang@licp.cas.cn

Calculation of heat loss

The heat loss of the solar evaporation device is attributed to radiation, convection and conduction.

a) The radiative heat loss is calculated by the Stefan-Boltzmann equation.¹

$$Q_{rad} = \varepsilon A \sigma (T^4 - T_2^4)$$
 (S1)

Where Q_{rad} represents heat flux, ε is the emissivity, A is the surface area, σ is the Stefan-Boltzmann constant (5.67 × 10⁻⁸ W m⁻² K⁻⁴), T (318.15 K) is the average surface temperature of as-prepared sample for a steady state of ~1 h, and T₂ (310.15 K) is the ambient temperature upward the absorber under 1 sun irradiation. According to equation (S1), the radiation loss is ~5 % of the solar flux (1 sun = 1000 W m⁻²).

b) The convective heat loss is defined by Newton' law of cooling.²

$$Q_{conv} = hA(T-T_2)$$
(S2)

Where Q_{conv} denotes the heat energy, h is the convection heat transfer coefficient, which is ~5 W m⁻² K. ΔT is the different value between the average surface temperature and the ambient temperature upward the absorber (ΔT =8 K). According to equation (S2), the convection heat loss is calculated to be ~4 %.

c) The conductive heat loss is calculated according to the following equation.³

$$Q_{cond}=Cm\Delta T$$
 (S3)

Where Q_{cond} is the heat energy, C is the specific heat capacity of water (4.2 J $^{\circ}C^{-1}$ g $^{-1}$), m (80 g) is the water weight, and ΔT (0.6 $^{\circ}C$) is the temperature difference of pure water after and before solar illumination under 1 sun for 1 h. Therefore, the conductive heat loss is calculated to be ~3%.

Fig. S1 SEM image of the silicone sponge.

Fig. S2 Surface elemental mapping of the CNTs@silicone solar evaporator^{6.0}.

Fig. S3 Differential scanning calorimetry curves of pure water and water in the evaporator.

Fig. S4 Evaporation rate of deionized water, 1 M H₂SO₄ aqueous solution and 1 M NaOH aqueous solution under 1 sun illumination in 1 h in the presence of different CNTs@silicone solar evaporators.

Fig. S5 Spontaneous dissolution & diffusion of the precipitated NaCl (during 10 h of continuous solar evaporation of 7.5 wt% NaCl solution under 1 sun) on the top surface of the evaporator^{14.0} back to the bulk saline water (7.5 wt% NaCl solution) via the superhydrophilic shell under the light off condition.

Fig. S6 (a) Photographs and (b) evaporation rate of the evaporator^{12.0} during the 60 h continuous solar desalination of seawater (Bohai Sea) under 1 sun. The seawater was replenished every 10 h during the test.

Fig. S7 Average evaporation rate of 3.5 wt% NaCl solution during 10 h of continuous solar evaporation under 1 sun in the presence of the evaporator^{6.0} in the open and closed systems.

Fig. S8. SEM images of (a) bulk water and (b) collected water.

 Table S1. Evaporation rate and solar-to-vapor efficiency of different CNTs@silicone solar

 evaporators.

Evaporators	Evaporation rate	Dark evaporation rate	Solar-to-vapor efficiency
	(kg m ⁻² h ⁻¹)	(kg m ⁻² h ⁻¹)	(%)
Evaporator ^{1.0}	1.72	0.16	95.3
Evaporator ^{2.0}	1.60	0.13	89.8
Evaporator ^{4.0}	1.52	0.12	85.6
Evaporator ^{6.0}	1.45	0.11	81.2
Evaporator ^{8.0}	1.40	0.12	78.2
Evaporator ^{10.0}	1.36	0.11	76.4
Evaporator ^{12.0}	1.32	0.10	74.9
Evaporator ^{14.0}	1.28	0.10	72.1

Table S2. The maximum salt-tolerance of different CNTs@silicone solar evaporators in the open and closed systems.

Evaporators	Maximum salt-tolerance / wt%		
	Open system	Closed system	
Evaporator ^{6.0}	1.0	3.0	
Evaporator ^{8.0}	1.5	4.5	
Evaporator ^{10.0}	2.5	5.0	
Evaporator ^{12.0}	3.5	6.0	
Evaporator ^{14.0}	5.0	7.5	

Table S3. Concentration changes of the major cations in simulated seawater and wastewater after solar evaporation using the evaporator^{4.0}, and the corresponding removal efficiencies.

Cations	Initial concentration	Concentration in	Removal efficiency
	$/ (mg L^{-1})$	collected water / (mg L^{-1})	/ %
Na ⁺	10525	7.62	99.93
Mg ²⁺	1106	2.1	99.81
K⁺	385	0.82	99.79
Ca ²⁺	398	0.75	99.81
Cu ²⁺	1280	0.1	99.99
Zn ²⁺	1300	0.125	99.99

References

- G. Ni, G. Li, Svetlana V. Boriskina, H. Li, W. Yang, T. Zhang and G. Chen, *Nature Energy*, 2016, 1, 16126.
- K. Yin, S. Yang, J. Wu, Y. Li, D. Chu, J. He and J.-A. Duan, *Journal of Materials Chemistry A*, 2019, **7**, 8361-8367.
- 3. X. Li, W. Xu, M. Tang, L. Zhou, B. Zhu, S. Zhu and J. Zhu, *Proceedings of the National Academy of Sciences*, 2016, **113**, 13953-13958.