Supplementary Information

Controlling the calcium carbonate microstructure of engineered living building materials

Alexandra Clarà Saracho,^{*a} Lorenzo Lucherini,^a Matteo Hirsch,^b Hannes M. Peter,^c Dimitrios Terzis,^a Esther Amstad,^b 1027 and Lyesse Laloui^a

Table S1. Extrusion dripping process parameters.

Fig. S1. Stress-strain curves for alginate under uniaxial compression (n = 3).

Table S2. Stress-strain parameters for alginate under uniaxial compression (n = 3) with calculated mean (μ) and standard deviation (σ^2).

Sample ID	Peak stress, σ_p (kPa)	Peak strain, ϵ_p (%)	Compressive modulus, E (kPa)
Alg-1	22.0	62.0	12.6 ($R^2 = 0.9994$)
Alg-2	31.1	68.8	11.8 ($R^2 = 0.9991$)
Alg-3	41.5	73.4	12.0 ($R^2 = 0.9987$)
μ	31.5	68.0	12.1
σ^2	9.7	4.7	0.4

1024

1029

Fig. S2. Viability of *S. pasteurii* after the extrusion process: (A) growth curves and encapsulation yield (EY, zoomed in plot), and (B) urease activity of immobilised and mobile (Reference) bacteria.

Fig. S3. Rheological analyses of (A) alginate (n = 3) and (B) CMC (n = 2) hydrogels.

Fig. S4. pH effect on the growth curve of *S. pasteurii* cultivated in NH₄-YE medium.

Fig. S5. (A) FTIR spectra of yeast extract and yeast extract-calcium chelate in the spectral windows $4000 - 2400 \,\mathrm{cm}^{-1}$ (left) and $1800 - 1200 \,\mathrm{cm}^{-1}$ (right). (B) Photographs showing the increase in the turbidity of the solution after formation of the peptide-calcium chelate.

Fig. S6. Heat map of the sample identification notation adopted corresponding to the ratio of $urea/CaCl_2-eq$ molarity for alginate and CMC hydrogels. Note that the $urea/CaCl_2-eq$ ratio remains constant along the diagonal. The adopted sample identification notation refers to the hydrogel, and the $CaCl_2-eq$ and urea concentrations used. For example, Alg-0.05 M-1.0 M refers to bacteria immobilised in alginate beads, and released in a 0.05 M CaCl_2-eq and 1.0 M urea solution.

Fig. S7. Electrical conductivity over time resulting from the hydrolysis of urea by *S. pasteurii* released from the alginate beads in two solutions with different initial urea concentrations (0.3 and 1.0 M). Higher electrical conductivity values resulting from the larger amount of CO₃²⁻ from urea hydrolysis are observed at higher urea concentration.

Table S3. Calcium content of hydrogel beads (values per 1 g of beads, n = 3).

Supporting polymer	Alg	CMC
Ca concentration (gL^{-1})	0.40 ± 0.03	1.56 ± 0.61
CaCl ₂ —eq (м)	0.01	0.04

Fig. S8. Thermogravimetric analyses with peak CaCO₃ decomposition temperature indicated showing the compositional changes of CaCO₃ formed in the absence of hydrogels (Reference): (A) alginate-free and (B) CMC-free.

Fig. S9. XRD patterns of CaCO₃ formed in the absence of hydrogels (Reference) with hkl values of Bragg peaks and relative mineral phase abundance indicated.

Fig. S10. Infrared spectra showing the structural changes of CaCO₃ formed in the absence of hydrogels (Reference).

Table S4. Summary of the FTIR peak intensities of CaCO₃ formed in the absence of hydrogels.

Sample ID	$v_3/v_{2,H_2O}$	v_3/v_1	v_3/v_2	v_3/v_4
Ref(Alg)-0.005 м-0.1 м	2.01	1.65	1.67	2.29
Ref(Alg)-0.015 м-0.3 м	4.19	2.34	1.46	3.42
Ref(Alg)-0.05 м-1.0 м	9.46	3.61	1.76	3.78
Ref(CMC)-0.02 м-0.1 м	2.99	1.72	1.54	3.09
Ref(CMC)-0.06 м-0.3 м	6.22	2.86	1.78	4.35
Ref(CMC)-0.2 м-1.0 м	5.36	2.74	1.74	3.38

Fig. S11. Infrared spectra showing the structural changes of CaCO₃ formed in the presence of hydrogels.

Table S5. Summary of the FTIR peak intensities of $CaCO_3$ formed in the presence of hydrogels.

Sample ID	$v_3/v_{2,H_2O}$	v_3/v_1	v_3/v_2	v_3/v_4
Alg-0.0005 м-0.01 м		n	/a	
Alg-0.005 м-0.1 м	3.91	2.92	2.31	10.10
Alg-0.015 м-0.3 м	5.69	4.04	1.91	5.83
Alg-0.05 м-1.0 м	21.39	7.25	2.00	5.55
СМС-0.002 м-0.01 м	1.52	n/a	1.44	1.67
СМС-0.02 м-0.1 м	10.80	2.71	1.72	3.89
СМС-0.06 м-0.3 м	n/a	n/a	2.13	4.13

Fig. S12. XRD patterns of CaCO₃ formed in the presence of hydrogels with hkl values of Bragg peaks and relative mineral phase abundance indicated.

Fig. S13. Thermogravimetric analyses with peak CaCO₃ decomposition temperature indicated showing the compositional changes of CaCO₃ formed in the presence of hydrogels: (A) alginate and (B) CMC.

Fig. S14. (Top) α vs. temperature plots and (Bottom) Coats-Redfern kinetics model of the decomposition of CaCO₃ precipitated in the absence of hydrogel (Reference; $\alpha = 0.15 - 0.78^{67}$): (A) Ref(Alg) and (B) Ref(CMC).

Fig. S15. (Top) α vs. temperature plots and (Bottom) Coats-Redfern kinetics model of the decomposition of CaCO₃ precipitated in the presence of hydrogel ($\alpha = 0.15 - 0.78^{67}$): (A) alginate and (B) CMC.

Table S6. TGA and kinetic parameters of the CaCO₃ decomposition in the absence of hydrogel (Reference).

Sample ID	Peak temperature, T (°C)	Calcination weight loss (CaCO ₃ content) (wt%)	Activation energy, E_a (kJ mol ⁻¹)	Pre-exponential factor, $\ln A$ (min ⁻¹)	<i>R</i> ²
Ref(Alg)-0.005 м-0.1 м Ref(Alg)-0.015 м-0.3 м Ref(Alg)-0.05 м-1.0 м	749.5 ± 32.4 738.9 ± 2.5 782.5 ± 1.1	24.9 ± 10.1 (64.3 ± 24.1) 26.4 ± 2.4 (63.7 ± 8.7) 38.6 ± 3.7 (87.3 ± 9.8)	$222.1 \pm 10.6 \\ 254.2 \pm 18.4 \\ 249.4 \pm 14.3$	$28.2 \pm 1.9 \\ 32.3 \pm 2.7 \\ 30.8 \pm 1.7$	$\begin{array}{c} 0.9990 \pm 0.0004 \\ 0.9984 \pm 0.0021 \\ 0.9999 \pm 0.0000 \end{array}$
Ref(CMC)-0.02 м-0.1 м Ref(CMC)-0.06 м-0.3 м Ref(CMC)-0.2 м-1.0 м	760.1 776.3 \pm 13.3 809.5 \pm 13.0	26.6 (67.8) 26.7 ± 2.5 (74.2 ± 0.7) 32.4 ± 8.7 (82.4 ± 9.0)	250.6 238.9 ± 23.6 235.1 ± 7.9	$31.529.5 \pm 3.528.2 \pm 1.5$	$\begin{array}{c} 0.9934 \\ 0.9987 \pm 0.0012 \\ 0.9988 \pm 0.0007 \end{array}$

Table S7. TGA and kinetic parameters of the CaCO₃ decomposition in the presence of alginate. Sample IDs in bold refer to the values along the diagonal displayed in Figure S6.

Sample ID	Peak temperature, <i>T</i> (°C)	Calcination weight loss (CaCO ₃ content) (wt%)	Activation energy, E_a (kJ mol ⁻¹)	Pre-exponential factor, ln <i>A</i> (min ⁻¹)	R^2
Alg-0.0005 м-0.01 м Alg-0.0005 м-0.1 м Alg-0.0005 м-0.3 м Alg-0.0005 м-1.0 м	n/a	0.0 0.0 0.0 0.0	n/a	n/a	n/a
Alg-0.005 м-0.1 м Alg-0.005 м-0.3 м Alg-0.005 м-1.0 м	713.3 ± 12.2 684.3 ± 22.4 719.6 ± 4.7	$\begin{array}{c} 38.7 \pm 3.8 \ (82.0 \pm 3.6) \\ 29.7 \pm 5.0 \ (70.0 \pm 26.1) \\ 36.8 \pm 3.1 \ (86.3 \pm 3.9) \end{array}$	249.6 ± 13.8 307.2 ± 29.8 266.2 ± 3.6	33.0±1.9 41.2±4.7 34.7±0.4	$\begin{array}{c} 0.9986 \pm 0.0017 \\ 0.9968 \pm 0.0018 \\ 0.9975 \pm 0.0017 \end{array}$
Alg-0.015 м-0.01 м Alg-0.015 м-0.3 м Alg-0.015 м-1.0 м	749.8 ± 7.5 761.0 ± 1.0 747.9 ± 8.6	$\begin{array}{c} 39.4 \pm 0.6 \ (90.7 \pm 1.6) \\ 40.1 \pm 0.2 \ (89.6 \pm 0.6) \\ 40.0 \pm 0.7 \ (87.5 \pm 3.4) \end{array}$	$270.2 \pm 3.2 \\ 268.3 \pm 8.2 \\ 282.6 \pm 6.2$	$\begin{array}{c} 34.3 \pm 0.6 \\ 33.7 \pm 1.0 \\ 35.8 \pm 1.0 \end{array}$	$\begin{array}{c} 0.9963 \pm 0.0015 \\ 0.9967 \pm 0.0010 \\ 0.9981 \pm 0.0002 \end{array}$
Alg-0.05 м-0.3 м Alg-0.05 м-1.0 м	785.3 773.5±10.3	38.5 (88.0) 42.6±0.6 (96.6±0.6)	267.3 254.5 ± 5.0	32.8 31.6±1.2	0.9973 0.9973 ± 0.0014

Table S8. TGA and kinetic parameters of the CaCO₃ decomposition in the presence of CMC. Sample IDs in bold refer to the values along the diagonal displayed in Figure S6.

Sample ID	Peak temperature, <i>T</i> (°C)	Calcination weight loss (CaCO ₃ content) (wt%)	Activation energy, E_a (kJ mol ⁻¹)	Pre-exponential factor, $\ln A$ (min ⁻¹)	R^2
CMC-0.002 M-0.01 M CMC-0.002 M-0.1 M CMC-0.002 M-0.3 M CMC-0.002 M-1.0 M	$692.9746.3 \pm 1.9740.0 \pm 7.3737.3 \pm 19.6$	5.4 (52.7) 23.8 \pm 0.3 (63.9 \pm 0.4) 30.3 \pm 0.5 (70.5 \pm 2.9) 25.2 \pm 1.6 (60.4 \pm 0.2)	$170.4252.2 \pm 28.0269.0 \pm 21.8234.2 \pm 4.5$	$22.1532.0 \pm 3.534.2 \pm 2.429.8 \pm 0.0$	$\begin{array}{c} 0.9963 \\ 0.9980 \pm 0.0006 \\ 0.9982 \pm 0.0013 \\ 0.9993 \pm 0.0004 \end{array}$
CMC-0.02 M-0.01 M CMC-0.02 M-0.1 M CMC-0.02 M - 0.3 M CMC-0.02 M-1.0 M	750.3 791.5 811.3 774.7	13.5 (52.5) 30.6 (82.0) 41.5 (92.9) 41.3 (93.9)	201.2 197.1 207.8 217.5	25.2 24.3 25.2 27.3	0.9997 0.9950 0.9962 0.9986
СМС-0.06 м-0.01 м СМС-0.06 м-0.3 м СМС-0.06 м-1.0 м	737.3 772.3 772.4	8.1 (47.6) 28.6 (77.4) 22.4 (69.9)	139.2 243.1 244.2	17.5 30.2 30.3	0.9986 0.9994 0.9997
СМС-0.2 м-1.0 м	778.4	25.5 (74.8)	223.7	27.7	0.9997

Fig. S16. Shelf-life of *Sporosarcina pasteurii* embedded within alginate beads stored at 4 °C for a 4-month period: (B) urease activity, and (A) growth curves and encapsulation yield (EY, zoomed in plot) of immobilised and mobile (Reference) bacteria.

Table S9. Untreated sand scaffold properties.

Specific gravity, G_s	2.65
Mean particle size, D_{50} : μ m	363
Maximum void ratio, e_{max}	0.89
Minimum void ratio, e_{min}	0.69
Dry bulk density, ρ_d : g cm ⁻³	1.55
Void ratio, <i>e</i>	0.71
Porosity, <i>n</i>	0.415

Table S10. MICP-treated sand specimen properties calculated from X-Ray μ -CT data.

CaCO ₃ content: wt%	0.514
Porosity, n	0.27
Back-calculated alginate content: wt%	14.5

Fig. S17. Thermogravimetric analyses of biomineralised hydrogel-sand scaffolds.

 $\label{eq:stable} \textbf{Table S11.} \ \textbf{TGA} \ \textbf{parameters of the decomposition of the biomineralised hydrogel-sand scaffolds}.$

Sample ID	Peak temperature, T (°C)	Calcination weight loss (CaCO ₃ content) (wt%)
MICP-Sand-1 MICP-Sand-2 MICP-Sand-3	620.9 675.8 659.6	0.489 (1.11) 0.324 (0.74) 0.603 (1.37)
$\frac{\mu}{\sigma^2}$	652.1 28.2	0.472 (1.07) 0.14 (0.32)

Fig. S18. SEM-SE2 images of the biomineralised hydrogel-sand scaffolds: (A) untreated sand grains; (B) CaCO₃ minerals on sand grain surface; and (C-E) alginate bridging sand grains and providing a substrate for CaCO₃ mineralisation.

Fig. S19. Views of three-dimensional (3D) volume reconstructions of biomineralised hydrogel-sand scaffolds through X-ray μ -CT scans. Three-dimensional volume reconstruction (light blue; pores; dark blue, sand grains; pink and grey, CaCO₃ minerals).