Electronic Supplementary Information

High-Performance Aqueous Zn-MnO₂ Batteries Enabled by the Coupling Engineering of K⁺ Pre-intercalation and Oxygen Defects

Kun Han,^a Fuqiang An,^a Fengsheng Yan,^a Hailong Chen,^{b,*} Qi Wan,^c Yongchang Liu,^a Ping Li,^{a,*} Xuanhui Qu^a

^a Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, PR China;

^b The Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

^c School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, PR China.

*Corresponding authors.

E-mail addresses: ustbliping@126.com, hailong.chen@me.gatech.edu

Fig. S1 (a) Energy dispersive X-ray (EDX) spectrum of KMO_d . (b) Inductively coupled plasma optical emission spectrometer (ICP-OES) results of KMO_d , KMO, and α -MnO₂.

Fig. S2 (a) FESEM image, (b) TEM image, and (c) high-resolution TEM image of α -MnO₂. The inset shows the corresponding FFT pattern.

Fig. S3 (a) TEM image, (b) high-resolution TEM image, and (c) HAADF-STEM image and corresponding elemental mappings (K, Mn, O) of KMO. The inset shows the corresponding FFT pattern.

Fig. S4 K 2p and C 1s high-resolution XPS spectra of KMO_d and KMO.

Fig. S5 Mn 3s high-resolution XPS spectra of KMO_d, KMO, and α -MnO₂. The gradual increase of Mn 3s multistate splitting distance in KMO and KMO_d indicating the gradual decrease of Mn valence from α -MnO₂ to KMO, and further from KMO to KMO_d.

Fig. S6 Galvanostatic charge-discharge curves at different current densities of (a) α -MnO₂, (b) KMO, and (c) KMO_d electrodes. (d) Galvanostatic charge/discharge curves of KMO_d, KMO, and α -MnO₂ electrodes at 2000 mA g⁻¹.

Fig. S7 (a) TEM image and (b) high-resolution TEM image of α -MnO₂-D.

Fig. S8 Rate capability of α -MnO₂ and α -MnO₂-D cathodes.

Fig. S9 Cycling performance of α -MnO₂ and α -MnO₂-D cathodes.

Fig. S10 (a) XRD spectra and (b) cycling performance in 2 M $ZnSO_4 + 0.1$ M MnSO₄ at 1000 mA g⁻¹ of α -MnO₂-350Air and KMO-350Air cathodes.

Fig. S11 CV profile of the Zn/KMO_d battery tested in electrolyte with K_2SO_4 additive at 0.1 mV s⁻¹.

Fig. S12 Charge-discharge profiles of the 2500th cycle for KMO_d electrode at 2000 mA g⁻¹ in electrolytes of 2 M ZnSO₄ and 0.1 M MnSO₄ without/with 0.1 M K₂SO₄ as an additive.

Fig. S13 Energy dispersive X-ray (EDX) spectra of KMO_d electrode after 2500 cycles at 2000 mA g⁻¹ in aqueous electrolytes of (a) 2 M ZnSO₄ and 0.1 M MnSO₄ and (b) with 0.1 M K₂SO₄ as an additive.

Fig. S14 Mn 2p and K 2p XPS spectra of KMO (a, b) and KMO_d (d, e) cathodes before cycling and after 300 cycles at 1000 mA g⁻¹ in aqueous electrolytes of 2 M ZnSO₄ + 0.1 M MnSO₄. (c, f) ICP-OES results of KMO and KMO_d cathodes after 300 cycles at 1000 mA g⁻¹ in aqueous electrolytes of 2 M ZnSO₄ + 0.1 M MnSO₄.

Fig. S15 (a) Illustration of the soft-packed battery configuration with anode-separator-cathode stack. (b) Charge-discharge profiles of the 10^{th} cycle and (c) capacity retention and CE of Zn-KMO_d soft-packed battery at 100 mA g⁻¹ in electrolyte of 2 M ZnSO₄ and 0.1 M MnSO₄ with 0.1 M K₂SO₄ as an additive. The inset shows that three LED lights can be lightened by two soft-packaged batteries.

Fig. S16 Cycling performance of KMO electrode at 1000 mA g^{-1} in 2 M ZnSO₄ and 0.1 M MnSO₄ electrolytes with/without 0.1 M K₂SO₄ as an additive.

Fig. S17 (a-h) Optimized supercells and H⁺ diffusion paths in α -MnO₂. The yellow spheres represent the H atom. (i) The corresponding energy variations and energy barriers for H⁺ diffusion along different paths in α -MnO₂.

Fig. S18 (a-h) Optimized supercells and H⁺ diffusion paths in KMO. The yellow spheres represent the H atom. (i) The corresponding energy variations and energy barriers for H⁺ diffusion along different paths in KMO.

Fig. S19 E versus t curves of KMO_d electrode for a single GITT during discharge process.

The solid diffusion coefficients were measured by Galvanostatic Intermittent Titration Technique (GITT) and calculated based on the Equation (1) below:^[1]

$$D_{GITT} = \frac{4}{\pi \tau} \left(\frac{m_B V_m}{M_B S}\right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2 \ (\tau \ll \frac{L^2}{D_{GITT}})$$
(1)

Where $m_B(g)$ is the weight of the active materials, $M_B(g/mol)$ is the molecular weight, $V_m(cm^3/mol)$ is its molar volume, S (cm²) is the surface area, τ (s) is duration time of the current pulse, ΔE_s is the voltage difference measured at the end of the relaxation period for two successive steps, ΔE_{τ} is the difference between the initial voltage and final voltage during the discharge pulse time τ after eliminating the iR drop, L is the thickness of electrode. If the voltage was linearly related to the $\tau^{1/2}$, above equation can be simplified as the following Equation (2):^[2]

$$D_{GITT} = \frac{4}{\pi\tau} \left(\frac{m_B}{\rho S}\right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2 \tag{2}$$

Where ρ is the density of active materials.

Fig. S20 The GITT curves of (a) α -MnO₂, (b) KMO, and (c) KMO_d electrodes.

Fig. S21 Nyquist plots of KMO_d, KMO, and α -MnO₂ electrodes (a) before cycling and (b) after 10 cycles.

Fig. S22 The adsorption structures for H^+ and Zn^{2+} of (a,b) α -MnO₂ and (c,d) KMO.

Fig. S23 The BET surface area plots of (a) KMO and (b) $\text{KMO}_{d.}$

Fig. S24 (a) Cyclic voltammetry (CV) curves at different scan rates, b) the corresponding linear relationship of log(v) and log(i) at different potentials, and c) the corresponding percent of pseudocapacitive contribution of α -MnO₂ electrode.

Fig. S25 (a) Cyclic voltammetry (CV) curves at different scan rates, b) the corresponding linear relationship of log(v) and log(i) at different potentials, and c) the corresponding percent of pseudocapacitive contribution of KMO electrode.

Fig. S26 Variation of the cathodic peaks voltage with different scan rates.

Fig. S27 (a) STEM-HAADF image, and (b,c) EDX mappings of the elemental distributions of Zn and Mn in KMO_d nanowire at fully discharged state.

Active materials	Mass loadings/ mg cm ⁻¹	References
K _{0.15} MnO _d (This work)	1.2	-
$K_{0.1}MnO_2$	unknown	Adv. Funct. Mater. 2019, 29, 1808375
$K_{0.19}MnO_2$	1.0	J. Mater. Chem. A, 2019, 7, 20806-20812
Ni-K _{0.12} MO·0.208H ₂ O	1.5	Angew. Chem. Int. Ed. 2021, 60, 4169-4174
O _d -MnO ₂	1.0	Adv. Energy Mater. 2019, 9, 1803815
δ -MnO ₂	unknown	Electrochem. Commun. 2015, 60, 121-125
Todorokite-MnO ₂	2.0	Electrochimica Acta, 2013, 112 138-143
ZnMn ₂ O ₄	2.0	J. Am. Chem. Soc. 2016, 138, 12894-12901
ZnHcF	unknown	Adv. Energy Mater. 2015, 5, 1400930
CuHcF	unknown ChemSusChem 2015, 8, 481-485	

Table S1. The mass loadings of different active materials shown in Fig. 3d.

Cathodes	Energy density (Wh kg ⁻¹)	Power density (W kg ⁻¹)	Cycle stability	Ref.
KMO _d	518	1884	 271 mAh g⁻¹ at 1000 mA g⁻¹ with 97.5% capacity retention after 500 cycles; 203 mAh g⁻¹ at 2000 mA g⁻¹ with 81.3% capacity retention after 2500 cycles 	This work
MnO ₂	231	4000 (9C)	100 mAh g ⁻¹ at 344 mA g ⁻¹ with 55.6% capacity retention after 150 cycles	[3]
O _d -MnO ₂	470	10 ⁴ (30 A g ⁻¹)	105 mAh g ⁻¹ at 5000 mA g ⁻¹ with 84% capacity retention after 2000 cycles	[4]
β-MnO ₂	385	-	134 mAh g ⁻¹ at 1250 mA g ⁻¹ with 83.2% capacity retention after 1000 cycles	[5]
K _{0.19} MnO ₂	380	403	180 mAh g ⁻¹ at 1540 mA g ⁻¹ with 90% capacity retention after 400 cycles	[6]
КМО	398	2750	156 mAh g ⁻¹ at 1000 mA g ⁻¹ after 1000 cycles	[7]
β-MnO ₂	-	-	135 mAh g ⁻¹ at 200 mA g ⁻¹ with 75% capacity retention after 200 cycles	[8]
MnO _x @N-C	390	1900	100 mAh g ⁻¹ at 2000 mA g ⁻¹ after 1600 cycles	[9]
Ni-doped KMO	421	1766	120 mAh g ⁻¹ at 1232 mA g ⁻¹ with 71.4% capacity retention after 2000 cycles	[10]
α-MnO ₂ @G	407	9450	240 mAh g ⁻¹ at 1000 mA g ⁻¹ after 100 cycles	[11]
D-MnO ₂	406	4100	250 mAh g ⁻¹ at 1000 mA g ⁻¹ after 500 cycles	[12]

Table S2. Electrochemical performance of MnO₂-based cathodes for aqueous ZIBs.

	a-MnO ₂	КМО	KMO _d
a/Å	9.687819	9.71956	9.775119
b/Å	9.687819	9.71956	9.711212
c/Å	2.890018	5.808683	5.816079
$\alpha/^{\circ}$	90	90	90
β/°	90	90	90
γ/°	90	90	90

Table S3. The optimized lattice constants of KMO_d, KMO, and α -MnO₂ unit cells.

References

- [1] D. T. Ngo, H. T. T. Le, C. Kim, J.-Y. Lee, J. G. Fisher, I.-D. Kim, C.-J. Park, *Energy Environ. Sci.* 2015, 8, 3577.
- [2] X. H. Rui, N. Ding, J. Liu, C. Li and C. H. Chen, *Electrochimica Acta* 2010, **55**, 2384.
- [3] Y. Li, S. Wang, J. R. Salvador, J. Wu, B. Liu, W. Yang, J. Yang, W. Zhang, J. Liu, J. Yang, *Chem. Mater.* 2019, **31**, 2036.
- [4] T. Xiong, Z. G. Yu, H. Wu, Y. Du, Q. Xie, J. Chen, Y. W. Zhang, S. J. Pennycook, W. S. V. Lee, J. Xue, *Adv. Energy Mater.* 2019, 9, 1803815.
- [5] M. Liu, Q. Zhao, H. Liu, J. Yang, X. Chen, L. Yang, Y. Cui, W. Huang, W. Zhao, A. Song, Y. Wang, S. Ding, Y. Song, G. Qian, H. Chen, F. Pan, *Nano Energy* 2019, 64, 103942.
- [6] G. Liu, H. Huang, R. Bi, X. Xiao, T. Ma, L. Zhang, J. Mater. Chem. A 2019, 7, 20806.
- [7] G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang, X. Cao, X. Zheng, A. Pan, S. Liang, Adv. Funct. Mater. 2019, 29, 1808375.
- [8] S. Islam, M. H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Kim, J. Jo, J. P. Baboo, D. T. Pham, D.
 Y. Putro, Y. Sun, J. Kim, *J. Mater. Chem. A* 2017, 5, 23299.
- [9] Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang, Y. Hu, D. Wang, L. Zuin, T. Zhou, Y. Wu, S. Sun, *Adv. Energy Mater.* 2018, 8, 1801445.
- [10]Q. Zhao, A. Song, W. Zhao, R. Qin, S. Ding, X. Chen, Y. Song, L. Yang, H. Lin, S. Li, F. Pan, *Angew. Chem. Int. Ed.* 2021, https://doi.org/10.1002/anie.202011588.
- [11]B. Wu, G. Zhang, M. Yan, T. Xiong, P. He, L. He, X. Xu, L. Mai, Small 2018, 14, 1703850.
- [12] J. Wang, J. Wang, X. Qin, Y. Wang, Z. You, H. Liu, M. Shao, ACS Appl. Mater. Inter. 2020, 12, 34949.