Supporting Information

Defect engineering via the F-doping of β-MnO$_2$ cathode to design hierarchical spheres of interlaced nanosheets for superior high-rate aqueous zinc ion batteries

Seoyeong Kima,1, Bon-Ryul Koob,c,1, Yong-Ryun Jod, Ha-Rim Ane, Young-Geun Leea, Chun Huangb,c,*, Geon-Hyoung Ana,f,**

aDepartment of Energy Engineering, Gyeongsang National University, Jinju, Republic of Korea

bDepartment of Engineering, King’s College London, London WC2R 2LS, UK

cDepartment of Materials, University of Oxford, Oxford, OX1 3PH, UK

dAdvanced Photonics Research Institute (APRI)

eCenter for Research Equipment, Korea Basic Science Institute, Daejeon 34133, Republic of Korea

fFuture Convergence Technology Research Institute, Gyeongsang National University, Jinju, Republic of Korea

*Corresponding author.

E-mail address: ann.huang@kcl.ac.uk (C. Huang)

** Corresponding author.

E-mail address: ghan@gnu.ac.kr (G.-H. An)

1These authors contributed equally to this work.
Table S1. Comparison of specific surface area and pore volume among all samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>S_{BET} (m^2 g^{-1})</th>
<th>Total pore volume (cm^3 g^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare MnO_2</td>
<td>14.86</td>
<td>0.08</td>
</tr>
<tr>
<td>4F-MnO_2</td>
<td>26.88</td>
<td>0.09</td>
</tr>
<tr>
<td>5F-MnO_2</td>
<td>79.37</td>
<td>0.15</td>
</tr>
<tr>
<td>6F-MnO_2</td>
<td>53.84</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Fig. S1. (a) DSC curve of bare MnO_2, NH_4F, and 5F-MnO_2 measured in range from room temperature to 200 °C of air atmosphere.
Fig. S2. High-magnification SEM images of 5F-MnO$_2$ obtained at different calcination temperature of (a) 100 °C and (b) 150 °C.
Fig. S3. Enlarged XRD patterns of all samples.
Fig. S4. (a) UPS spectra, (b) VBM spectra, and (c and d) curve of $(\alpha h\nu)^2$ versus photon energy of bare MnO$_2$ and 5F-MnO$_2$.
Fig. S5. Comparison of the rate performances between bare MnO$_2$ and heat-treated MnO$_2$ without the F-doping process.