Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Importance of interface engineering between the hole transport layer and the indium-tin-oxide electrode for high-efficient polymer solar cells

Sujung Park,^{1,†} Febrian Tri Adhi Wibowo,^{2,†} Narra Vamsi Krishna,² Jiho Ryu,¹ Heunjeong Lee,¹ Jin Hee Lee⁴, Yung Jin Yoon,² Jin Young Kim,² Jung Hwa Seo,⁴ Seung-Hwan Oh,^{3,*} Sung-Yeon Jang,^{2,*} and Shinuk Cho^{1,*}

¹Department of Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, Republic of Korea

²Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea

³Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 34057, Republic of Korea

⁴Department of Materials Physics, Dong-A University, Busan 49315, Republic of Korea

*Corresponding Authors: <u>sucho@ulsan.ac.kr</u> (S.Cho), <u>syjang@unist.ac.kr</u> (S.Y.Jang), <u>ohsh@kaeri.re.kr</u> (S.H.Oh) *S. Park and F. T. A. Wibowo contributed equally to this work.

Figure S1. Photoelectric measurements of PTB7-Th:PC₇₁BM devices made with and without a WPFSCz- layer. (a) *J-V* characteristics. (b) External quantum efficiency (EQE) curves. (c) Internal quantum efficiency (IQE) curves. (d) J_{sc} versus light intensity. (e) V_{oc} versus light intensity.

Figure S2. (a) The *J-V* characteristics, (b) EQE, and (c) IQE curves of PTB7-Th:IEICO-4F devices with and without a WPFSCz- layer. (d) J_{sc} and (e) V_{oc} versus light intensity for PTB7-Th:PC₇₁BM with and without a WPFSCz- layer.

Figure S3. Histograms of PBDB-T-2F:Y6 solar cell performance parameters.

Figure S4. Frequency-dependent capacitance measurement of PBDB-T-2F:Y6 with and without a WPFSCz-layer.

Figure S5. (a) In 3d XPS spectra and (b) Au 4f XPS spectra of WPFSCz- films on ITO substrates and Au substrates, respectively

	O - metal	О-Н	0-С
ΙΤΟ	1.000	1.000	1.000
WPFSCz- thin films	1.189	0.881	0.622
WPFSCz- thick films	1.249	0.664	0.699

Table S1. Relative area ratio according to O 1s XPS spectra.

Figure S6. Surface potential images of (a) ITO, (b) ITO with WPFSCz-, (c) PEDOT:PSS on ITO, and (d) PEDOT:PSS on ITO with WPFSCz-.

Figure S7. (a) The *J-V* characteristics and (b) EQE curves of PBDB-T-2F:Y6 devices with and without a WPFSCz- layer based on MoOx as the HTL.

Figure S8. (a) The *J*-*V* characteristics and (b) EQE curves of PBDB-T-2F:Y6 inverted devices with and without PFN-Br layer. (c) V_{oc} versus light intensity for PBDB-T-2F:Y6 inverted devices with and without PFN-Br layer.

Table S2. Summary of photovoltaic parameters of PBDB-T-2F:Y6 solar cells with MoOx as the HTL.

	$V_{\rm OC}\left({ m V} ight)$	$J_{\rm SC}~({\rm mA/cm^2})$	FF	η (%)
ITO/MoO _x	0.841	26.839	71.23	16.08
ITO/WPFSCz-/MoO _x	0.848	27.661	73.25	17.18

 Table S3. Summary of photovoltaic parameters of PBDB-T-2F:Y6 inverted devices with ZnO HTL. In this inverted device, an n-type polyelectrolyte, PFN-Br, was utilized.

	$V_{\rm OC}\left({ m V} ight)$	$J_{\rm SC}~({\rm mA/cm^2})$	FF	η (%)
ITO/ZnO	0.844	26.372	68.33	15.21
ITO/PFN-Br/ZnO	0.843	27.341	70.49	16.22

Figure S9. EQE spectra of PBDB-T-2F:Y6 solar cells made with and without a WPFSCz- layer and based on different types of PEDOT:PSS: (a) AI4083, (b) Clevios P, (c) PH1000, and (d) PH1000 + 5% DMSO.

Figure S10. Film thickness measurements of WPFSCz- using a Bruker Dektak XT surface profiler. The average thickness of WPFSCz- is 2.78 nm.

Figure S11. (a) The *J-V* characteristics and (b) EQE curves of PBDB-T-2F:Y6 devices PEDOT:PSS and WPFSCz- only as HTL.

Figure S12. The water contact angle of (a) bare ITO and (b) ITO with a WPFSCz- layer.

Figure S13. Secondary electron cut-off and HOMO onset UPS spectra of increasing thickness of PEDOT:PSS (a) without WPFSCz- and (b) with WPFSCz-.

Figure S14. Hole mobility and trap density analysis.