Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

## **Supporting Information**

## Design of a Unique Anion Framework in Halospinel for Outstanding Performance of All Solid-state Li-ion Battery: First-principles Approach

Hoje Chun<sup>1</sup>, Kyungju Nam<sup>2,3</sup>, Sung Jun Hong<sup>1</sup>, Joonhee Kang<sup>4\*</sup>, Byungchan Han<sup>1,2\*</sup>

<sup>1</sup> Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea

<sup>2</sup> Department of Vehicle Convergence Engineering, Yonsei University, Seoul 03722, Republic of Korea

<sup>3</sup> Institute of Fundamental and Advanced Technology, R&D Division, Hyundai Motor Company, Uiwang 16082, Republic of Korea

<sup>4</sup> Platform Technology Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea

- Computational Details
- Tables S1 to S7
- Figures S1 to S5

| $Li_2Sc_{2/3}X_4$ | Haven ratio |
|-------------------|-------------|
| Cl                | 2.40        |
| Br                | 0.51        |
| Ι                 | 0.97        |

**Table S1**. The Haven ratio for  $Li_2Sc_{2/3}X_4$  (X = Cl, Br, and I) from AIMD simulation at 800 K.

Table S2. Phase equilibria at the interface between  $LiCoO_2$  and  $Li_2Sc_{2/3}Cl_4$  with the decomposition energies.

| Molar fraction | Phase equilibria                                                                                            | Mutual reaction energy<br>(meV/atom) |
|----------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 0              | $\mathrm{Li}_{17}\mathbf{Sc}_5\mathbf{Cl}_{32}$                                                             | 0.00                                 |
| 0.51           | ClO <sub>2</sub> , Co <sub>3</sub> O <sub>4</sub> , Sc <sub>2</sub> O <sub>3</sub> , LiCl                   | -42.14                               |
| 0.58           | Co <sub>3</sub> O <sub>4</sub> , Li(CoO <sub>2</sub> ) <sub>2</sub> , Sc <sub>2</sub> O <sub>3</sub> , LiCl | -47.42                               |
| 1              | LiCoO <sub>2</sub>                                                                                          | 0.00                                 |

Table S3. Phase equilibria at the interface between  $LiCoO_2$  and  $Li_2Sc_{2/3}Br_4$  with the decomposition energies.

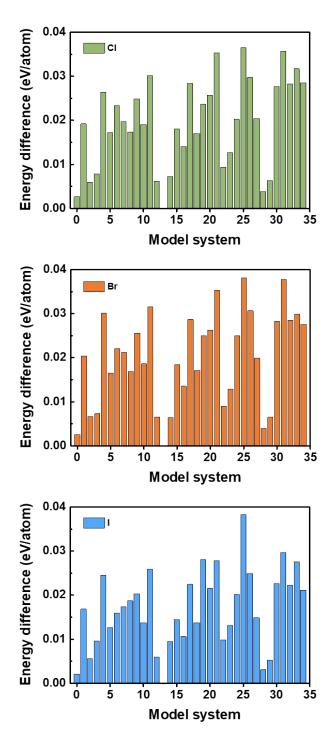
| Molar fraction | Phase equilibria                                                           | Mutual reaction energy<br>(meV/atom) |
|----------------|----------------------------------------------------------------------------|--------------------------------------|
| 0              | $Li_{17}Sc_5Br_{32}$                                                       | 0.00                                 |
| 0.16           | Br, ScBrO, CoBr <sub>2</sub> , LiBr                                        | -68.02                               |
| 0.27           | Br, ScBrO, CoO, LiBr                                                       | -81.53                               |
| 0.36           | Br, CoO, Sc <sub>2</sub> O <sub>3</sub> , LiBr                             | -88.72                               |
| 0.45           | Sc <sub>2</sub> O <sub>3</sub> , Br, Co <sub>3</sub> O <sub>4</sub> , LiBr | -75.71                               |
| 1              | LiCoO <sub>2</sub>                                                         | 0.00                                 |

| Molar fraction | Phase equilibria                             | Mutual reaction energy<br>(meV/atom) |
|----------------|----------------------------------------------|--------------------------------------|
| 0              | $Li_{17}Sc_5I_{32}$                          | 0.00                                 |
| 0.16           | ScIO, LiI, I, Co                             | -94.92                               |
| 0.22           | LiI, Sc <sub>2</sub> O <sub>3</sub> , I, Co  | -121.61                              |
| 0.36           | LiI, Sc <sub>2</sub> O <sub>3</sub> , I, CoO | -142.77                              |
| 0.43           | LiScO <sub>2</sub> , LiI, I, CoO             | -131.25                              |
| 1              | LiCoO <sub>2</sub>                           | 0.00                                 |

Table S4. Phase equilibria at the interface between  $LiCoO_2$  and  $Li_2Sc_{2/3}I_4$  with the decomposition energies.

Table S5. Phase equilibria at the interface between  $LiCoO_2$  and  $Li_2Sc_{2/3}Cl_4$  with the decomposition energies under an applied potential of 3 V vs Li metal.

| Phase equilibria                                                                   | Mutual reaction energy<br>(meV/atom)                                                                              |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| ScCl <sub>3</sub> , Cl <sub>2</sub>                                                | 0.00                                                                                                              |
| ScCl <sub>3</sub> , CoCl <sub>2</sub> , Cl <sub>2</sub> O                          | -112.90                                                                                                           |
| ClO <sub>2</sub> , ScCl <sub>3</sub> , CoCl <sub>2</sub>                           | -115.91                                                                                                           |
| Co <sub>3</sub> O <sub>4</sub> , ClO <sub>2</sub> , ScCl <sub>3</sub>              | -74.91                                                                                                            |
| ClO <sub>2</sub> , Co <sub>3</sub> O <sub>4</sub> , Sc <sub>2</sub> O <sub>3</sub> | -60.55                                                                                                            |
| CoO <sub>2</sub>                                                                   | 0.00                                                                                                              |
|                                                                                    | $ScCl_3, Cl_2$ $ScCl_3, CoCl_2, Cl_2O$ $ClO_2, ScCl_3, CoCl_2$ $Co_3O_4, ClO_2, ScCl_3$ $ClO_2, Co_3O_4, Sc_2O_3$ |


**Table S6**. Phase equilibria at the interface between  $LiCoO_2$  and  $Li_2Sc_{2/3}Br_4$  with the decomposition energies under an applied potential of 3 V vs Li metal.

| Molar fraction | Phase equilibria             | Mutual reaction energy<br>(meV/atom) |
|----------------|------------------------------|--------------------------------------|
| 0              | ScBr <sub>3</sub> , Br       | 0.00                                 |
| 0.16           | ScBrO, Br, CoBr <sub>2</sub> | -121.06                              |

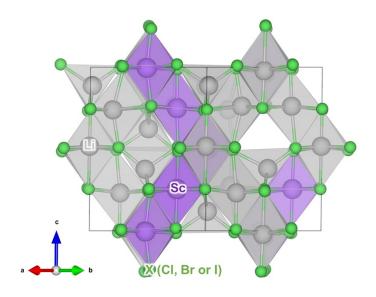
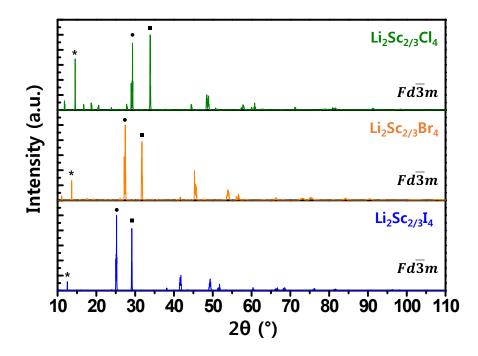
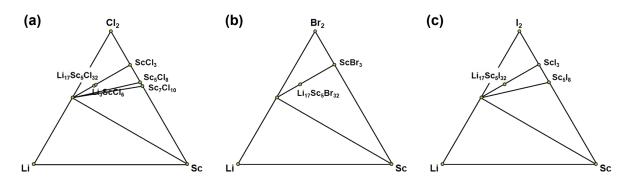
| 0.27 | ScBrO, Br, CoO                                                      | -156.91 |
|------|---------------------------------------------------------------------|---------|
| 0.36 | Br, CoO, Sc <sub>2</sub> O <sub>3</sub>                             | -179.96 |
| 0.45 | Co <sub>3</sub> O <sub>4</sub> , Br, Sc <sub>2</sub> O <sub>3</sub> | -176.51 |
| 1    | CoO <sub>2</sub>                                                    | 0.00    |

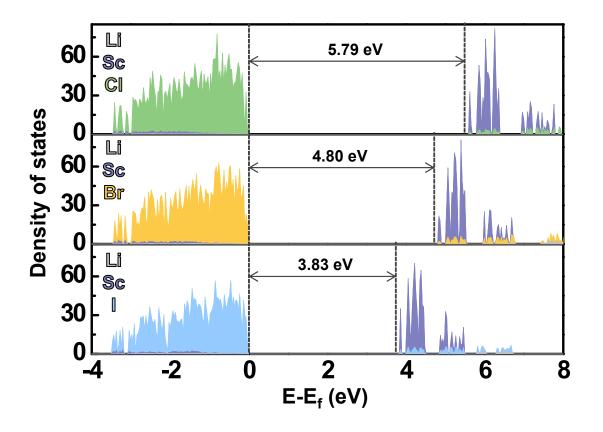
Table S7. Phase equilibria at the interface between  $LiCoO_2$  and  $Li_2Sc_{2/3}I_4$  with the decomposition energies under an applied potential of 3 V vs Li metal.

| Molar fraction | Phase equilibria                                                                                    | Mutual reaction energy<br>(meV/atom) |
|----------------|-----------------------------------------------------------------------------------------------------|--------------------------------------|
| 0              | ScI <sub>3</sub> , I                                                                                | 0.00                                 |
| 0.16           | ScIO, I, Co                                                                                         | -193.72                              |
| 0.22           | Co, Sc <sub>2</sub> O <sub>3</sub> , I                                                              | -253.91                              |
| 0.36           | Sc <sub>2</sub> O <sub>3</sub> , CoO, I                                                             | -334.50                              |
| 0.87           | Sc <sub>2</sub> O <sub>3</sub> , CoO, Co(IO <sub>3</sub> ) <sub>2</sub>                             | -212.65                              |
| 0.90           | Co <sub>3</sub> O <sub>4</sub> , Sc <sub>2</sub> O <sub>3</sub> , Co(IO <sub>3</sub> ) <sub>2</sub> | -201.22                              |
| 1              | CoO <sub>2</sub>                                                                                    | 0.00                                 |



**Figure S1.** Energy differences of model systems of  $Li_{17}Sc_5X_{32}$  (X = Cl, Br, and I) plotted with respect to the structure that is thermodynamically most stable.



Figure S2. Thermodynamically most unstable structures of  $Li_2Sc_{2/3}X_4$ .



**Figure S3.** XRD patterns of  $Li_2Sc_{2/3}X_4$  (X = Cl, Br, and I). The experimental peaks are marked with symbols.



**Figure S4.** Gibbs triangle of the ternary chemical phase diagram of Li-Sc- $X_2$  (X = (a) Cl, (b) Br, and (c) I) with formulas of known compounds.



**Figure S5.** Electronic projected density of states (DOS) of  $Li_2Sc_{2/3}X_4$  (X = Cl, Br, and I) using HSE06 hybrid functionals.