Supporting Information

Regulation of the Adsorption Site of Ni₂P by Ru and S Co-doping for

Ultra-efficient Alkaline Hydrogen Evolution

Xiaodeng Wang^{a,b,c}, Qi Hu^a, Guodong Li^a, Shaomin Wei^a, Hengpan Yang^a, Chuanxin

He^a,*

^a College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China

^b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China

^c Department of Chemistry and Environmental Engineering, Hanshan Normal University, Qiaodong, Chaozhou, China

ECSA and TOF

The electrochemical active surface area (ECSA) was estimated using the capacitance (Cdl) by the following equation, where the specific capacitance for a flat surface is used as 40 μ F cm⁻² as reported.

$$A_{ECSA}^{NiP2} = \frac{C_{dl}}{40 \, \mu F \, cm^{-2} \, per \, cm^2}$$

To calculate the per-site turnover frequency (TOF), we used the following formula:

The total number of hydrogen turn overs was calculated from the current density according to :

$$\#_{H2} = (j \ \overline{cm^2}) \ \frac{1 \ C \ s^{-1}}{(1000 \ mA)} \ \frac{1 \ mol \ e^-}{(96485.3 \ C)} \ \frac{1 \ mol \ H_2}{(2 \ mol \ e^-)} \ \frac{6.022 \times 10^{23} H_2 \ mol \ ecules}{1 \ mol \ H_2})$$

$$= 3.12 \times 10^{15} \frac{H_2/s}{cm^2} \ per \ \frac{mA}{cm^2} \times |j|$$

#surface sites per real surface area:

For Ni₂P

$$#surface sites = \left(\frac{3 a toms/unit}{100.0397 \text{ Å}^3/unit}\right)^{\frac{2}{3}}$$
$$= 0.9654 \times 10^{14} a toms \ cm^{-2}$$

Finally, plot of current density can be converted into a TOF plot according to

$$TOF = \frac{3.12 \times 10^{15} \frac{H_2/s}{cm^2} \text{ per } \frac{mA}{cm^2} \times |j|}{\# surface \ sites \times A_{ECSA}^{NiP2}}$$

Figure S1 XRD patterns for (a) CP and (b) Ru-Ni(OH)₂ and Ni(OH)₂.

Figure S2 XRD for Ru/S-Ni₂P.

Figure S3 SEM images for (a) Ni(OH)₂ and Large-scale SEM images for (b) Ni(OH)₂.

Figure S4 SEM images for (a) Ni_2P , (c) S- Ni_2P . Large-scale SEM images for (b) Ni_2P

and (d) S-Ni₂P.

Figure S5 SEM images for (a) Ru-Ni₂P, (c) Ru/S-Ni₂P. Large-scale SEM images for

(b) Ru-Ni₂P and (d) Ru/S-Ni₂P.

Figure S6 XPS spectra of (a) Ni 2p, (b)P 2p, (c) S 2p and (d) Ru 3d regions for Ru/S-

Ni₂P.

Figure S7 XPS spectra of Ru 3p regions for Ru-Ni₂P and Ru/S-Ni₂P.

Figure S8 (a) LSV curves of Pt/C and Ru/S-Ni₂P in 1 M KOH. (b) The corresponding

Tafel plots.

Figure S9 CVs for Ni₂P (a), S-Ni₂P (b), Ru-Ni₂P (c) and Ru/S-Ni₂P (d).

Figure S10 Calculated exchange current density for Ni₂P, S-Ni₂P, Ru-Ni₂Pand Ru/S-Ni₂P in 1 M KOH by applying extrapolation method to the Tafel plot.

Figure S11 Calculated TOF for Ni₂P, S-Ni₂P, Ru-Ni₂Pand Ru/S-Ni₂P in 1 M KOH.

Figure S12 Nyquist plots of Ni_2P (a), S- Ni_2P (b), Ru- Ni_2P (c) and Ru/S- Ni_2P (d)at

different overpotential.

Figure S13. XPS spectra of (a) Ni 2p, (b)P 2p, (c) S 2p and (d) Ru 3d regions for

Ru/S-Ni₂P after HER hydrolysis.

Figure S14 (a) XRD pattern for Ru/S-Ni₂P after HER hydrolysis.

Figure S15. (a) SEM image of the Ru/S-Ni₂P after electrolysis.

Figure S16. (a) TEM images and (b) lattice image of the Ru/S-Ni₂P after electrolysis.

Figure S17. Top and side view of Ni_2P (a), $S-Ni_2P$ (b), $Ru-Ni_2P$ (c) and $Ru/S-Ni_2P$ (d). Green, pink, yellow and blue balls represent Ni, P, S and Ru atoms, respectively.

Table S1 Comparison of HER performance in alkaline media for $Ru/S-Ni_2P$ withother TMs HER electrocatalysts.

Catalysts	J(mA cm ⁻²)	η (mV vs RHE)	Tafel Slope (mV dec ⁻¹)	Ref
Ni ₂ P /Ni	10	141	68	S11
Ni ₂ P/Ti	10	120	60	S2 ²
NiP ₂ NS/CC	10	75	51	S3 ³
Ni ₂ P NPs	20	130	81	S4 ⁴
N-MoP/CC	10	70	55	S5 ⁵
Mo-Ni ₂ P	10	81	53.4	S6 ⁶
Mn-CoP	10	76	52	S 7 ⁷
O, Cu-CoP	10	72	62.6	S8 ⁸
Ni ₂ P-NiSe ₂	10	66	72.6	S9 ⁹
S-MoP	10	104	56	S10 ¹⁰
Ni ₃ S ₂ /NF	10	149	127	S11 ¹¹
N, Mn-MoS ₂	10	66	50	S12 ¹²
P/Ni-Mo ₂ C	10	165	53.6	S13 ¹³
Ni _{1.5} Co _{1.4} P@Ru	10	52	50	S14 ¹⁴
Ni@Ni ₂ P-Ru	10	80	41	815 ¹⁵
S-Co ₂ P@NCC	10	105	77	S16 ¹⁶

S,N-MoP	10	63	44	S17 ¹⁷
FeP ₂ /C	10	~150	66	S18 ¹⁸
Ni-P/Ni/NF	10	129	70	S19 ¹⁹
Ni ₂ P–Ni ₁₂ P ₅	10	76	68	S20 ²⁰
Fe-Ni ₂ P	10	106	37.7	S21 ²¹
Ru/S-Ni ₂ P	10 50	49 75	49.5	This work

Table S2. Summary of the electrochemical properties of Ni_2P , Ru- Ni_2P , S- Ni_2P and

Ru/S-Ni ₂ P. Note	that the J _{0,normalized}	is normalized	by relative s	surface area	(C_{dl})
------------------------------	------------------------------------	---------------	---------------	--------------	------------

Sample	J ₀ (mA/cm ²)	C _{dl} (mF/cm ²)	Relative surface area	J _{0,normalized} (mA/cm ²)
Ni ₂ P	0.095x10 ⁻³	19.2	1	0.095x10 ⁻³
S-Ni ₂ P	0.178x10 ⁻³	23.5	1.2	0.148x10 ⁻³
Ru-Ni ₂ P	0.398x10 ⁻³	25.8	1.34	0.297x10 ⁻³
Ru/S-Ni ₂ P	0.668x10 ⁻³	34.6	1.80	0.371x10 ⁻³

Table S3 Summary of the Rct values for Ni_2P , Ru- Ni_2P , S- Ni_2P and Ru/S- Ni_2P at certain overpotential from 0 mV to 200 mV.

Sample	0 mV (Ω)	50 mV (Ω)	100 mV (Ω)	150 mV (Ω)	200 mV (Ω)
Ni ₂ P	611.20	139.80	26.03	6.70	1.40
S-Ni ₂ P	171.10	63.64	11.59	3.50	1.32

Ru-Ni ₂ P	146.70	27.07	6.79	2.85	1.05
Ru/S-Ni ₂ P	60.64	10.07	3.29	1.68	1.02

References

- Y. Shi, Y. Xu, S. Zhuo, J. Zhang, B. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 2376.
- [2] Z. Pu, Q. Liu, C. Tang, A. M. Asiri, X. Sun, *Nanoscale* **2014**, 6, 11031.
- [3] P. Jiang, Q. Liu, X. Sun, *Nanoscale* **2014**, 6, 13440.
- [4] E. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267.
- [5] N. Chen, W. Zhang, J. Zeng, L. He, D. Li, Q. Gao, *Appl. Catal. B Environ*.2020, 268.
- [6] Q. Wang, H. Zhao, F. Li, W. She, X. Wang, L. Xu, H. Jiao, *J. Mater. Chem. A* 2019, 7, 7636.
- [7] T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A. M. Asiri, X. Sun, L. Chen, ACS Catal. 2016, 7, 98.
- [8] K. Xu, Y. Sun, Y. Sun, Y. Zhang, G. Jia, Q. Zhang, L. Gu, S. Li, Y. Li, H. J. Fan, ACS Energy Lett. 2018, 3, 2750.
- [9] C. Liu, T. Gong, J. Zhang, X. Zheng, J. Mao, H. Liu, Y. Li, Q. Hao, *Appl. Catal. B Environ.* 2020, 262.
- [10] K. Liang, S. Pakhira, Z. Yang, A. Nijamudheen, L. Ju, M. Wang, C. I. Aguirre-Velez, G. E. Sterbinsky, Y. Du, Z. Feng, J. L. Mendoza-Cortes, Y.

Yang, ACS Catal. 2019, 9, 651.

- [11] W. He, L. Han, Q. Hao, X. Zheng, Y. Li, J. Zhang, C. Liu, H. Liu, H. L. Xin, Acs Energy Lett. 2019, 4, 2905.
- [12] T. Sun, J. Wang, X. Chi, Y. Lin, Z. Chen, X. Ling, C. Qiu, Y. Xu, L. Song, W. Chen, C. Su, ACS Catal. 2018, 8, 7585.
- [13] Z. Li, S. Xu, K. Chu, G. Yao, Y. Xu, P. Niu, Y. Yang, F. Zheng, *Inorg Chem* 2020, 59, 13741.
- [14] S. Liu, Q. Liu, Y. Lv, B. Chen, Q. Zhou, L. Wang, Q. Zheng, C. Che, C. Chen, *Chem. Commun.* 2017, 53, 13153.
- [15] Y. Liu, S. L. Liu, Y. Wang, Q. H. Zhang, L. Gu, S. C. Zhao, D. D. Xu, Y. F.
 Li, J. C. Bao, Z. H. Dai, *J. Am. Chem. Soc.* 2018, 140, 2731.
- [16] M. A. R. Anjum, M. D. Bhatt, M. H. Lee, J. S. Lee, *Chem Mater* 2018, 30, 8861-8870.
- [17] M. A. R. Anjum, J. S. Lee, ACS Catal. 2017, 7, 3030.
- [18] J. Jiang, C. Wang, J. Zhang, W. Wang, X. Zhou, B. Pan, K. Tang, J. Zuo, Q. Yang, J. Mater. Chem. A 2015, 3, 499.
- [19] J. Zhang, Z. Zhang, Y. Ji, J. Yang, K. Fan, X. Ma, C. Wang, R. Shu, Y. Chen, *Appl. Catal. B Environ.* 2021, 282, 119609.
- [20] Z. Wang, S. Wang, L. Ma, Y. Guo, J. Sun, N. Zhang, R. Jiang, *Small* 2021, 17, 2006770
- [21] M. Li, J. Wang, X. Guo, J. Li, Y. Huang, S. Geng, Y. Yu, Y. Liu, W. Yang, Appl Surf Sci 2021, 536, 147909.