Supporting Information

Simultaneous enhancements in the Seebeck coefficient and conductivity of PEDOT:PSS

 by blending with ferroelectric BaTiO_{3} nanoparticles Wang, ${ }^{\text {a }}$ Aung Ko Ko Kyaw,*b and Jianyong Ouyang*a
${ }^{\text {a }}$ Department of Materials Science and Technology, National University of Singapore, Singapore 117576. Email: mseoj@nus.edu.sg
${ }^{\mathrm{b}}$ Department of Electrical and Electronic Engineering at Southern University of Science and Technology, Shenzhen, Guangdong, China. Email: aung@sustech.edu.cn
${ }^{\mathrm{c}}$ Institute of Materials Research and Engineering, (IMRE), Agency for Science, Technology and Research, (A*STAR), 138634, Singapore

Fig. S1. Photos of aqueous dispersions of (a) BaTiO_{3}, (b) PEDOT:PSS and (c) PEDOT:PSS with $20 \mathrm{vol} \%$ of BaTiO_{3}.

Fig. S2. Particle size distribution of PEDOT:PSS aqueous dispersion, BaTiO_{3} aqueous suspension and their mixture suspension by dynamic light scattering (DLS) measurements.

Fig. S3. (a) Surface and (d) cross-sectional SEM images of PEDOT:PSS/ BaTiO_{3} films with the BaTiO_{3} loading of 50.0 vol. $\%$. (b) and (c) are the corresponding surface EDS mappings of Ba and Ti. (e) and (f) are the corresponding cross-sectional EDS mappings of Ba and Ti EDS mappings.

Fig. S4. Topographical AFM images of PEDOT:PSS/ BaTiO_{3} films with the BaTiO_{3} loadings of (a) $0 \mathrm{vol} \%$, (b) $20 \mathrm{vol} \%$, (c) $33.3 \mathrm{vol} \%$, and (d) $50 \mathrm{vol} \%$. The dimension of each image is 2 $\mu \mathrm{m} \times 2 \mu \mathrm{~m}$.

Fig. S5. The $\Delta \mathrm{V}$ vs $\Delta \mathrm{T}$ relationship of a PEDOT:PSS/ BaTiO_{3} film with the BaTiO_{3} loading of $45 \mathrm{vol} \%$.

Fig. S6. A comparison of the open-circuit voltage (Voc) versus the time after a temperature gradient ($\Delta \mathrm{T}$) of 1 K was applied. (a) A neat PEDOT:PSS and (b) PEDOT:PSS/ BaTiO_{3} film with $25 \mathrm{vol} \% \mathrm{BaTiO}_{3}$.

Fig. S7. (a) Temperature dependences of the resistances of a neat PEDOT:PSS film and PEDOT: $\mathrm{PSS} / \mathrm{BaTiO}_{3}$ composite films and (b) the analyses of the temperature dependences of the resistances with the one-dimensional VRH model. The BaTiO_{3} loadings are indicated.

