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Electronic Supporting Information (ESI) Note 1. Additional computational details for DFT 

calculations

For each elementary step in OER and ORR, the Gibbs free energy changes ΔG is calculated 

as:

ΔG = ΔE + ΔZPE – TΔS + ΔGpH + ΔGU

where ΔE, ΔZPE, TΔS, ΔGpH, and ΔGU represent changes in DFT-calculated total energy, zero-

point energy (ZPE), entropic contribution, pH contribution, and applied electrode potential 

contribution, respectively. Adsorption energy for OxHy species involved in OER/ORR was 

calculated by:1

ΔE*OxHy =E*OxHy - E* - [xEH2O - (2x-y)EH2/2]

where * denotes active sites on the catalyst surface, and EH2O and EH2 represent the energy of free 

H2O and H2 molecule, respectively. ZPE and entropic contribution terms were calculated by the 

vibrational frequencies of free molecules and adsorbates, and these values were listed in Table S1. 

ΔGpH was calculated by kBTln10×pH, and the pH value was set as zero in this work; for non-zero 

pH (e.g. in alkaline condition), the reaction Gibbs free energy can be corrected by ΔGpH, which 

will not be discussed in this work.2, 3 ΔGU was defined as -eU, where e and U represent the number 

of transferred electrons and applied electrode potential, respectively. Gibbs free energy for the 

H+/e- pair was calculated using Nørskov’s computational hydrogen electrode (CHE) model:2 

G(H++e-)=0.5G(H2). The solvent effect was considered by adding a -0.30 eV correction to all the 

DFT-calculated total energy of *OH and *OOH, because they can form hydrogen bonds with H2O 

when solvated and thus are more stable.4

The protonation of *OOH in ORR can proceed through two different pathways: (1) *OOH 

+ H+ + e- → *O + H2O (4e- ORR); (2) *OOH + H+ + e- → * + H2O2 (2e- ORR). Thus, the 4e-/2e- 
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selectivity of ORR can be judged by comparing the potential barriers of reactions 1 and 2, that are, 

the potential barriers of *O formation and *H2O2 formation, respectively, with one H2O molecule. 

If reaction 1 is more favorable than reaction 2 (i.e. ΔGO + ΔG(H2O) < ΔG(H2O2)), that is, ΔGO < 

3.52 eV (ΔG(H2O2)-ΔG(H2O)),5 then the selectivity toward 4e- ORR can be ensured. It should be 

noticed that our analysis is based on thermodynamics following the conventional model. Recently, 

Zhao et al. developed an advanced ‘constant-potential hybrid-solvation dynamic model’ to study 

the 2e-/4e- selectivity of ORR by considering the reaction kinetics at the solid-water interface.6 

Their results indicate that the ORR selectivity also roots in the atomic-scale reaction kinetics and 

is dependent on pH and potential (which is related to the different proton affinity to two O in 

*OOH).6 However, this model needs extensive grand-canonical DFT and AIMD simulations 

considering the explicit water molecules and implicit solution modelling, which is not suitable for 

our screening due to the high time cost. As such, for ORR selectivity, we only apply the 

thermodynamic analysis in this work using the conventional model.

For the density of states (DOS) calculations, we have employed the DFT(PBE)+U scheme 

with Dudarev’s rotational approach7, 8 for localized 3d electrons in the fourth-period TM@C2N 

following the computational scheme for SACs in ref. 4. The values of U-J for Sc-Zn are set as 

2.11, 2.58, 2.72, 2.79, 3.06, 3.29, 3.42, 3.4, 3.87, and 4.12 eV.4 A much denser 5×5×1 Monkhorst-

Pack k-points mesh was used in the DOS calculations. Note that for adsorbates calculations we do 

not employ DFT+U, since several previous reports suggest that DFT+U results may contradict 

experimental results or result in unreliable results in adsorption energy,9, 10 and PBE can effectively 

describe the catalytic activity of SACs.
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ESI Note 2. Investigation of thermodynamic and electrochemical stability of TM@C2N SACs

We define formation energy Ef as Ef = E(TM@C2N) – E(TM_bulk) – E(C2N), where 

E(TM@C2N), E(TM_bulk), and E(C2N) represent the DFT-calculated energies of TM@C2N SAC, 

single TM atom in its most stable bulk structure, and C2N monolayer, respectively. By calculating 

Ef, we can investigate the thermodynamic stability of TM@C2N by comparing the binding and 

cohesive ability of single TM atoms on C2N. To be more specific, if Ef<0, the binding of single 

TM atoms on C2N is more favorable than their aggregating into clusters, so that the thermodynamic 

stability of TM@C2N can be confirmed.

For the electrochemical stability, we use the dissolution potential (Udiss) versus standard 

hydrogen electrode (SHE) as an indicator. Udiss is defined as Udiss = U0
diss - Ef/eNe, where U0

diss 

and Ne represent the standard dissolution potential of bulk metal and the number of electrons in 

the dissociation process, respectively. Positive Udiss values suggest electrochemical stable systems, 

where the dissolution of single TM atoms can be neglected in the electrochemical conditions.5, 11

All the results listed in Table S5 indicate that among 27 TM@C2N SACs studied, 20 SACs 

(except for Mn, Mo, Ru, W, Os, Ir, and Pt@C2N) exhibit thermodynamic stability; further 

screening using Udiss suggest that Ni, Cu, Rh, Pd, Ag, Cd, Hf, and Au@C2N are stable in an 

electrochemical environment.
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ESI Note 3. Details of machine learning

Machine learning (ML) was performed in the scikit-learn package,12 and the random forest 

algorithm was chosen to train the ML model. To enlarge the chemical space for ML, except 

TM@C2N with TM-N2 coordination, we also consider the SACs with N1C1 and N1S1 coordination 

(Fig. S10), and the TM@C2N dataset is amplified by a factor of 2, so the total number of data in 

the dataset becomes 108. 20% of the data were randomly chosen as the test set and the rest of them 

formed the training set. We have tried two parameters in the random forest-based ML modelling: 

the maximum depth of the tree and the number of trees in the forest. By using the grid search 

optimization method provided in the scikit-learn package, we identify the optimized parameters 

(maximum depth of the tree as 22 and the number of trees in the forest as 31) in our ML model. 

Here, we set the range of grid search for maximum depth of tree as 2-30, and that for the number 

of trees in the forest as 1-50. To analyze the obtained ML model and exclude the influence of 

random splitting of training/test set to a larger extent, we also performed a cross-validation test 

using the k-fold strategy (number of folds set as 5 and allow shuffling), where an average cross-

validation score of 0.903 can be obtained (5 cross-validation scores: 0.869, 0.910, 0.882, 0.937, 

0.919). The relatively lower score than the training and test set can be attributed to the size of our 

SACs dataset, which will be increased in our future work. A representative python script for 

training the ML model was provided in the Appendix of ESI.
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ESI Note 4. Feasibility of the extension of our methodology to SACs for other reactions and 

double-atom catalysts (DACs)

In this work, we combine the DFT calculations with machine learning for unravelling the 

catalytic origin of bifunctional OER/ORR for SACs. We build a three-tier computational scheme 

‘catalytic activity-activity descriptor-intrinsic feature importance’ for investigating the structure-

activity relationship for SACs, which has high adaptability for the extension to SACs for other 

catalytic reactions, such as hydrogen evolution reaction, nitrogen and CO2 reduction reaction. On 

the one hand, scaling relationships and activity descriptors based on the electronic structure or 

catalyst geometry can benefit the rational design and high-throughput screening of catalysts,13 and 

on the other hand, ML can link the catalytic activity with intrinsic, element-based properties, and 

accelerate the catalyst design.

Recently, DACs have emerged as a new frontier of heterogeneous catalysis, and due to the 

synergistic effect of the metal dimer site and the atomically dispersed nature, DACs may exhibit 

higher activity while maintaining the advantages of SACs including high atomic utilization 

efficiency, high selectivity, and stability.14 The extension of SACs to DACs is natural, and 

computationally different mechanisms or adsorption configurations may appear, but the 

computational scheme is universal. We recently noticed two theoretical works on DACs 

combining DFT with ML: Zhu and coworkers used DFT screening to identify CuFe and NiCu 

DACs with ORR performance surpassing that of Pt, and identified several descriptors (electron 

affinity, electronegativity, and atomic radii) to describe the activity by ML;15 Deng et al. also used 

DFT and ML to study ORR performance on a group of homo- and hetero-nuclear DACs, which is 

governed by geometric parameters.16
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Table S1. DFT-calculated total energy EDFT, zero point energy (ZPE), entropic contribution term 

TS (under the temperature of 298 K), and Gibbs free energy G for gases and adsorbates in the 

OER/ORR process. The entropy values for gases are taken from NIST database 

(https://doi.org/10.18434/T4D303). For adsorbates, only vibrational contribution is considered, 

and the contribution from frequency below 50 cm-1 is calculated by 50 cm-1.17
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Species EDFT (eV) ZPE (eV) TS (eV) G (eV)

H2 (g) -6.767 0.269 0.404 -6.902

H2O (g) -14.151 0.567 0.670 -14.254

*O - 0.065 0.078 -

*OH - 0.316 0.145 -

*OOH - 0.420 0.197 -



Table S2. Optimized lattice parameters and magnetic moment for TM@C2N.

TM@C2N a (Å) b (Å) TM@C2N a (Å) b (Å)

Sc 8.186 8.207 Ru 8.254 8.324

Ti 8.145 8.247 Rh 8.259 8.329

V 8.193 8.262 Pd 8.295 8.302

Cr 8.257 8.270 Ag 8.284 8.285

Mn 8.278 8.287 Cd 8.249 8.255

Fe 8.287 8.296 La 8.245 8.248

Co 8.304 8.289 Hf 8.138 8.163

Ni 8.300 8.301 Ta 8.092 8.206

Cu 8.297 8.301 W 8.065 8.232

Zn 8.283 8.287 Re 8.120 8.345

Y 8.184 8.187 Os 8.138 8.418

Zr 8.144 8.164 Ir 8.143 8.424

Nb 8.094 8.196 Pt 8.170 8.412

Mo 8.112 8.250 Au 8.288 8.295
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Table S3. Magnetic moment for TM@C2N.

TM@C2N Magnetic moment TM@C2N Magnetic moment

Sc 0 Ru 0.47

Ti 0 Rh 0

V 2.73 Pd 1.10

Cr 3.27 Ag 0

Mn 0 Cd 0

Fe 1.86 La 0

Co 0.07 Hf 1.24

Ni 1.27 Ta 1.19

Cu 0 W 0

Zn 0 Re 2.29

Y 0 Os 0.09

Zr 1.20 Ir 0

Nb 0 Pt 0

Mo 2.44 Au 0
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Table S4. DFT-calculated adsorption Gibbs free energy for *O, *OH, and *OOH on TM@C2N. 

SACs on which *OOH dissociation happens are denoted in italic.

TM@C2N
ΔGO 

(eV)

ΔGOH 

(eV)

ΔGOOH 

(eV)
TM@C2N

ΔGO 

(eV)

ΔGOH 

(eV)

ΔGOOH 

(eV)

Sc -0.493 -1.714 1.772 Ru 0.685 -0.007 2.836

Ti -2.124 -1.607 -0.834 Rh 1.877 0.558 3.480

V -1.184 -0.864 0.082 Pd 2.765 0.828 3.844

Cr 2.861 -0.223 3.323 Ag 4.260 1.915 4.774

Mn -0.488 -0.578 2.297 Cd 3.303 0.532 3.720

Fe 0.882 -0.180 2.858 La 0.715 -1.157 2.110

Co 1.106 0.061 2.980 Hf -2.407 -2.179 -1.362

Ni 2.304 0.520 3.582 Ta -2.155 -1.391 -2.295

Cu 2.664 0.721 3.790 W -1.895 -2.244 -2.318

Zn 2.275 -0.482 2.911 Re *

Y 0.388 -1.622 1.672 Os 0.331 -0.231 2.652

Zr -2.354 -1.904 -1.172 Ir 1.277 0.090 3.088

Nb -2.152 -1.532 -1.857 Pt 1.725 0.095 3.297

Mo -1.081 -0.689 -0.874 Au 3.012 0.989 4.072

*The values for Re@C2N are not listed due to the failure of convergence in the DFT calculations.
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Table S5. Formation energy (Ef), standard dissolution potential (U0
diss), number of electrons 

involved in the dissolution of pure metals (Ne), and calculated dissolution potential for TM@C2N 

SACs (Udiss, vs. SHE). U0
diss values are extracting from references 5, 18. Computational details are 

summarized in ESI Note 2.

TM@C2N Ef (eV) U0
diss (V) Ne Udiss (V)

Sc -4.57 -2.08 3 -0.56

Ti -2.48 -1.63 2 -0.39

V -1.49 -1.13 2 -0.38

Cr -1.19 -0.91 2 -0.31

Mn 0.44 -1.19 2 -1.41

Fe -0.35 -0.44 2 -0.27

Co -0.03 -0.28 2 -0.26

Ni -0.56 -0.26 2 0.02

Cu -0.65 0.34 2 0.66

Zn -1.13 -0.76 2 -0.20

Y -5.90 -2.37 2 -0.40

Zr -3.72 -1.45 4 -0.52

Nb -1.11 -1.10 3 -0.73

Mo 0.18 -0.20 3 -0.26

Ru 0.67 0.46 2 0.12

Rh -0.17 0.60 2 0.69

Pd -0.37 0.92 2 1.10

Ag -1.26 0.80 1 2.06

S11



Cd -1.89 -0.40 2 0.54

La -6.77 -2.38 3 -0.12

Hf -3.28 1.55 4 2.37

Ta -1.02 -0.60 3 -0.26

W 1.52 0.10 3 -0.41

Os 1.81 0.84 8 0.61

Ir 0.74 1.16 3 0.91

Pt 0.32 1.19 2 1.03

Au -0.04 1.52 3 1.53
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Table S6. All the feature values for ML modelling.

TM

Atomic 

numbe

r (Z)

Atomic 

radius 

(r, pm)

Outer 

electron 

number 

(ne)

Electro-

negativity 

(N)

First 

ionization 

energy 

(IE, 

kJ/mol)

Electro

n 

affinity 

(EA, 

kJ/mol)

Oxide 

formation 

enthalpy 

(Hox,f, 

eV)

Sc 21 144 3 1.36 633.1 18.1 -10.52

Ti 22 136 4 1.54 658.8 7.6 -11.45

V 23 125 5 1.63 650.9 50.6 -8.23

Cr 24 127 6 1.66 652.9 64.3 -6.39

Mn 25 139 7 1.55 717.3 -50 -5.66

Fe 26 125 8 1.83 762.5 15.7 -7.17

Co 27 126 9 1.88 760.4 63.7 -5.88

Ni 28 121 10 1.91 737.1 112 -5.09

Cu 29 138 11 1.9 745.5 118.4 -3.63

Zn 30 131 12 1.65 906.4 -58 -2.36

Y 39 162 3 1.22 600 29.6 -10.42

Zr 40 148 4 1.33 640.1 41.1 -13.09

Nb 41 137 5 1.6 652.1 86.1 -11.95

Mo 42 145 6 2.16 684.3 71.9 -7.63

Ru 44 126 8 2.2 710.2 101.3 -6.18

Rh 45 135 9 2.28 719.7 109.7 -4.93

Pd 46 131 10 2.2 804.4 53.7 -2.75
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Ag 47 153 11 1.93 731 125.6 -1.01

Cd 48 148 12 1.69 867.8 -68 -1.14

La 57 169 3 1.1 538.1 48 -10.42

Hf 72 150 4 1.3 658.5 17.2 -13.60

Ta 73 138 5 1.5 761 31 -13.91

W 74 146 6 2.36 770 78.6 -9.63

Os 76 128 8 2.18 840 106.1 -6.17

Ir 77 137 9 2.2 880 151 -6.52

Pt 78 128 10 2.28 870 205.3 -3.33

Au 79 144 11 2.54 890.1 222.8 -1.08

Table S6. (continued)

Coordination Nsum

N2 (Pristine TM@C2N) 6.08

N1C1 5.59

N1S1 5.62

Part of the data in Table S6 is extracted from the websites (Wikipedia, ptable.com) and ref.19. Hox,f 

values are calculated based on the DFT-calculated energies of TM crystals (based on our 

calculations) and the most stable bulk structures of TM oxides (from the Materials Project database 

calculated using DFT+U5, 20).
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Table S7. Indicators for the ML model, including R2 value, mean absolute error (MAE), and rooted 

mean square error (RMSE).

Dataset Training set Test set

R2 value 0.985 0.981

MAE (eV) 0.143 0.191

RMSE (eV) 0.227 0.250

Table S8. ΔGO and ηsum values for all the SACs as dataset in ML modelling.

TM@C2N N1C1 N1S1

TM
ΔGO 

(eV)
ηsum (V) ΔGO (eV) ηsum (V) ΔGO (eV) ηsum (V)

Sc -0.493 4.863 0.085 4.590 -0.43 3.830

Ti -2.124 7.361 -2.16 7.423 -1.889 6.584

V -1.184 5.702 -1.33 5.751 -1.125 5.903

Cr 2.861 3.307 0.28 3.129 0.107 3.398

Mn -0.488 3.364 0.555 2.727 0.405 2.739

Fe 0.882 2.242 0.706 2.233 0.675 2.175

Co 1.106 1.879 1.549 1.950 1.435 1.712

Ni 2.304 1.264 1.841 1.577 2.299 1.487

Cu 2.664 1.222 2.802 1.230 0.85 2.894

Zn 2.275 3.239 2.537 2.751 0.454 2.970

Y 0.388 7.996 0.85 4.483 0.266 5.151
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Zr -2.354 8.309 -2.259 8.008 -2.315 8.350

Nb -2.152 6.483 -2.44 8.971 -1.958 8.285

Mo -1.081 2.158 -1.258 6.773 -1.296 6.060

Ru 0.685 1.046 0.634 2.198 0.985 1.905

Rh 1.877 1.109 2.205 0.713 2.077 0.889

Pd 2.765 2.199 2.04 1.547 2.605 1.261

Ag 4.26 8.461 3.795 1.767 1.329 3.228

Cd 3.303 8.606 2.183 0.972 0.698 2.580

La 0.715 3.967 1.158 7.813 0.362 8.799

Hf -2.407 9.482 -2.315 8.564 -2.375 9.096

Ta -2.155 2.552 -2.404 8.959 -2.338 8.854

W -1.895 1.743 -1.667 9.067 -1.778 2.485

Os 0.331 1.535 -0.05 2.822 0.533 1.641

Ir 1.277 1.176 1.472 2.089 1.454 2.034

Pt 1.725 4.870 2.003 1.851 2.189 1.345

Au 3.012 2.354 2.582 0.750 3.173 4.573
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Fig. S1 Optimized structures of *OOH adsorbed on (a) Rh@C2N and (b) Mo@C2N. C, N, O, H, 

Rh, and Mo atoms are represented in brown, cyan, red, pale pink, light green, and purple, 

respectively. The *OOH radical dissociates on the latter (a stable *OOH adsorption geometry 

cannot be obtained) and keeps undissociated on the former.

Fig. S2 Heatmap of ηsum=ηOER+ηORR on 3d-5d TM@C2N.
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Fig. S3 Gibbs free energy diagram for 2e- ORR toward H2O2 on Ag@C2N. The potential-limiting 

step (PLS) and the limiting potential UL are marked in the figures.
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Fig. S4 Gibbs free energy diagram for OER on (a) Au and (b) Pd@C2N and ORR on (c) Rh and 

(d) Pt@C2N at zero and applied electrode potential U in acidic medium. The potential-limiting 

steps (PLS) are marked in the figures.
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Fig. S5 Total energy as a function of time during the AIMD simulations for (a) Rh, (b) Au, and 

(c) Pd@C2N at 500 K. Inset shows the side and top views of the structures after 10 ps AIMD 

simulations. 2×2 supercells are used in the simulations.
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Fig. S6 Volcano-shaped plot of (a) OER and (b) ORR overpotential as a function of ΔGO for d7-d9 

TM@C2N.

The reason that the highest OER and ORR activities cannot coexist in the same SAC can be 

attributed to the different reaction mechanisms and hence different peak positions in the volcano-

shaped relationship for OER and ORR (see Fig. S6 and discussions in the main text). Indeed, none 

of the TM@C2N SACs are better than both IrO2(110) for OER (0.56 V) and Pt(111) for ORR (0.45 

V). However, according to our calculations, Rh@C2N, except for its outstanding catalytic activity 

for OER (ηOER of 0.37 V), has an ORR overpotential (0.67 V) only slightly higher than that for 

Pt(111), and Au/Pd@C2N with low ORR overpotential (0.38/0.40 V) also has relatively low ηOER 

of 0.79/0.71 V. Note that there are discrepancies between DFT-calculated and experimentally 

measured OER/ORR overpotentials due to the simplified DFT model. After comparing with 

experimental reports, we found that the ηORR for Rh@C2N is close to that for Fe-single atoms 

supported on S, N-codoped carbon (~0.65 V under DFT-PBE level) with high experimental ORR 

activity (half-wave potential of 0.896 V),21 and ηOER for Au/Pd@C2N is smaller than that for all 
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four Mn-NxCy SAC models (the best one is Mn-N2C2 with 0.871 V under DFT-PBE level), while 

Mn-N2C2 SACs are proved to be efficient OER/ORR catalysts in the experiments.22 Therefore, we 

are confident to conclude that Rh, Au, and Pd@C2N are outstanding bifunctional OER/ORR SACs.

Fig. S7 Total density of states (DOSs) for Ag and Au@C2N. Fermi level is set to zero. 

Contributions from spin-up and spin-down channels are denoted in black and red, respectively.
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Fig. S8 Relationship between ΔGO and d-band center εd for TM@C2N. εd is defined as

𝜀𝑑=

+∞

∫
‒ ∞

𝐸𝐷(𝐸)𝑑𝐸

+∞

∫
‒ ∞

𝐷(𝐸)𝑑𝐸

where D(E) is TM d-orbital PDOS as a function of energy (as shown in Fig. 4a).
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Fig. S9 Schematic illustration of the effect of weight function on the partial density of states of d-

orbital D(E) of catalysts.

Fig. S10 Geometric structure of SACs with (a) N1C1 and (b) N1S1 coordinations. C, N, S, and TM 

atoms are represented in brown, cyan, yellow, and purple, respectively.
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Fig. S11 Pearson correlation heatmap for features including atomic number (Z), atomic radius (r), 

outer electron number (ne), electronegativity (N), first ionization energy (IE), electron affinity 

(EA), single-atom oxide formation enthalpy (Hox,f), and the sum of electronegativity of coordinated 

atoms of TM (Nsum) in our ML model.
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Fig. S12 Pie chart for feature importance analysis in the ML model for ηsum.
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Appendix. A representative python script for training the ML model.

import numpy as np
import sklearn
from sklearn import preprocessing
#print (sklearn.__version__)
import pandas as pd

pd.set_option('display.width', 1000)
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error,r2_score,mean_absolute_error
import joblib
from sklearn.feature_selection import VarianceThreshold

from scipy.stats import pearsonr

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV

dataset_url = 'Catalysis.csv'
data = pd.read_csv(dataset_url)
#print (data.head())
#print (data.shape)
#print (data.describe())

#transfer = VarianceThreshold()
#new_data = transfer.fit_transform(data)
#print('new_data:\n',new_data,new_data.shape)

data_title = data.columns.values.tolist()
r = []
for i in range(len(data_title)):
   for j in range(len(data_title)):
        #print('The Pearson correlation coefficient between %s and %s is 
%f'%(data_title[i],data_title[j],pearsonr(data[data_title[i]],data[data_title[j]])[0]))
        if i==j:
            continue
        else:
            print(i,j,pearsonr(data[data_title[i]],data[data_title[j]])[0])
        r.append(pearsonr(data[data_title[i]],data[data_title[j]])[0])

#for i in range(len(r)):
#    if r[i]>0.6:
#        print(r[i])
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#        print(i)
#    else:
#        continue

y = data.Quality
x = data.drop('Quality', axis=1)

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size =0.2,random_state = 9)

transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

#print(y_test)
#print(x_test)

forest = RandomForestRegressor()
param_dict = {'n_estimators':[i for i in range(1,50,30)],'max_depth':[i for i in range(2,30,20)]}
forest = GridSearchCV(forest,param_grid=param_dict,cv = 3)
forest.fit(x_train, y_train)

print(y_train)
print(forest.predict(x_train))
print(y_test)
print(forest.predict(x_test))

score1 = forest.score(x_train,y_train)
print('Train:\n',score1)
score1 = forest.score(x_test,y_test)
print('Test:\n',score1)

print(forest.best_estimator_)
#joblib.dump(forest,"catalysts.pkl")

forest=RandomForestRegressor(n_estimators=31,max_depth=22)
forest.fit(x_train, y_train)

score1 = forest.score(x_train,y_train)
print('Train:\n',score1)
score1 = forest.score(x_test,y_test)
print('Test:\n',score1)
print(forest.feature_importances_)
joblib.dump(forest,"catalysts.pkl")
print('\nR2 value: Train:')
print(r2_score(y_train,forest.predict(x_train)))
print('Test:')
print(r2_score(y_test,forest.predict(x_test)))
print('RMSE: Train:')
print(mean_squared_error(y_train,forest.predict(x_train))**0.5)
print('Test:')
print(mean_squared_error(y_test,forest.predict(x_test))**0.5)
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print('MAE: Train:')
print(mean_absolute_error(y_train,forest.predict(x_train)))
print('Test:')
print(mean_absolute_error(y_test,forest.predict(x_test)))

kf=KFold(n_splits=5,shuffle=True)
cv_result=cross_val_score(forest,x,y,cv=kf)
print(cv_result)
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